Biomarker geochemistry of a foreland basin: the Oligocene Menilite Formation in the Flysch Carpathians of Southeast Poland

J. KOSTER*, M. ROSPONDEK1, S. SCHOUTEN3, M. KOTARBA4, A. ZUBRZYCKI4 and J. S. SINNINGHE DAMSTÉ5

1Department of Petroleum Geology, Institute of Geology and Palaeontology, Technical University Clausthal, Leibnistr. 10, 38678 Clausthal-Zellerfeld, Germany, 2Institute of Geological Sciences, Jagellonian University, ul. Oleandry 2a, 30063 Krakow, Poland, 3Department of Marine Biogeochemistry and Toxicology, Netherlands Institute for Sea Research (NIOZ), 1790 AB Den Burg, Texel, The Netherlands and 4University of Mining and Metallurgy, Al. Mickiewicza 30, 30059 Krakow, Poland

Abstract—Black shales of the Menilite Formation, the source rock for oils in the Carpathian overthrust belt, display a large variability in their bulk and molecular geochemical parameters. Biomarker and stable carbon isotope analyses indicate a variable contribution from different algae (particularly dinoflagellates and diatoms) and cyanobacteria. This is reflected by specific, predominantly sulfurised biomarkers (e.g. C35 homohopanoids, C25 highly branched isoprenoids and marine n-alkanes) and by particular distributions of steranes and 4-methylsteranes comprising 24-nor- and 24-methyl-27-norcholestanes, and related, novel steranes with a methylation at C-23. The presence of hopanoids of methanotrophic origin (δ13C up to ~57‰) implies a temporarily enhanced full methane cycle in a marine environment which affected the isotopic composition of organisms dwelling in the upper photic zone. The presence of isorenieratene derivatives indicates periods of euxinic conditions within the photic zone in all investigated sub-basins. © 1998 Elsevier Science Ltd. All rights reserved

Key words—Carpathians, Oligocene, palaeoenvironment, steranes, hopanes, n-alkanes, stable carbon isotopes, organic sulfur compounds, highly branched isoprenoids, methane cycle, Poland

INTRODUCTION

The Carpathian basin is part of the foreland basin that was formed in front of the Alpide orogenic belt. It extends from the Czech Republic through Slovakia, Poland and the Ukraine to Romania. From the Upper Cretaceous to the Oligocene it was filled with up to 4000 m of flysch sediments. During the Oligocene large amounts of organic matter were buried in sediments of the Menilite Formation. The area investigated here is located in the SE part of Poland, where the Menilite Formation outcrops in the major overthrust units (from N to S: Skole, Silesian, Pre-Dukla and Dukla units; Fig. 1). These units correspond to former sub-basins and swells, which internally subdivided the Carpathian foredeep into several sub-basins (Unrug, 1979; Ellouz and Roca, 1994). It comprises mainly carbonate free, black and grey shales and claystones. Intercalations of turbidite sandstones and grey mudstones deposited on deep marine fans are common. Chert horizons and thin pelagic coccolith limestones are important as stratigraphic markers (Jucha, 1969; Haczewski, 1989). In the Skole unit, diatomites and diatomaceous shales and marlstones occur in the Lower Menilite Formation (Kotlarszyk and Lesniak, 1990). The total organic carbon (TOC) content of the black shales reaches ca. 3 to 10 wt% (average values of various sections; Köster et al., 1998).

The base of the Menilite Formation is near the Eocene/Oligocene boundary, and is marked by the underlying Globigerina marlstone which is regarded to be synchronous in the Polish Carpathians (Bleicher, 1970; van Couvering et al., 1981). To the top intercalations of calcareous turbidite sediments occur frequently and lead over to the Krosno Formation. This transition is diachronous and becomes increasingly older from the outer to the inner tectonic units as shown by the different positions of isochronous coccolith limestone horizons (Jucha, 1969; Haczewski, 1989; see Köster et al., 1998, Fig. 2). The Menilite Formation is immature to marginally mature at outcrop over most of the area investigated (Köster et al., 1998). A general increase in maturity from the outer to the inner units and lateral variations within the inner nappes are observed (Kruger et al., 1996; Bessereau et al., 1997; Köster et al., 1998). Higher stages of matu-
Fig. 1. Geological overview map of the eastern part of the Polish Carpathians (modified after Depowski, 1990 and Bessereau et al., 1997) showing the location of outcrops (circles) and wells (squares) studied. The major tectonic units are indicated. Vertically hatched: Pre-Dukla unit; diagonally hatched: Sub-Silesian unit; cross hatched: Miocene sediments resting on the overthrust units; horizontally hatched: Borislav-Pokut unit; black: Penny Klippen belt; SB: Stebnik and coeval units. Stars indicate locations of samples containing isorenieratene derivatives. See text for abbreviations of the outcrops and wells.

Recently, increasing interest in the Carpathians and its hydrocarbon resources has led to a number of tectonic, geochemical and petroleum geological studies (Koltun, 1992; Roure et al., 1993; ten Haven et al., 1993; Lafargue et al., 1994; Köster et al., 1995; Roca et al., 1995; Kruege et al., 1996; Bessereau et al., 1997). A study of crude oils and some potential source rocks has shown that most Carpathian oils are very likely derived from the Menilite Formation (ten Haven et al., 1993; Lafargue et al., 1994). These oils are characterised by the presence of 28,30-dinorhopane, a C25 highly branched isoprenoid alkane, oleanane, and other higher-plant derived triterpanes and a sometimes relatively high sulfur content (ten Haven et al., 1993). It has been observed that the shales of Menilite Formation display a strong facies variability and that they are very inhomogenous in their geochemical composition (ten Haven et al., 1993; Kruge et al., 1996; Bessereau et al., 1997; Köster et al., 1998). This may have led to a complex system of petroleum generation and is probably responsible for the observed variety of crude oil types. The variability of the organic matter is indicated by the hydrogen index (HI) values which vary strongly within the sections and between the sub-basins investigated (Köster et al., 1998). High HI values were found in black shale samples from the lower Menilite Formation in Skole unit (HI > 350 mg HC/g TOC) and in the Pre-Dukla unit throughout the whole section at Rudawka Rymanowska (RR in Fig. 1; HI > 500 mg HC/g TOC). Black shales with low HI values < 300 mg/g TOC occur in the upper part of the sequence in Skole unit.

Here, we present results of a detailed organic geochemical study of selected shale samples from the Menilite Formation in Skole unit based on biomarkers and their stable carbon isotope composition. It aims at a palaeoenvironmental reconstruction and the identification of sources of the organic matter to improve
our understanding of the formation and heterogeneity of these source rocks. Special attention is paid to the very immature black shales from the Skole unit. The samples discussed in this study were selected on the basis of the data obtained from an accompanying study of the source rock potential (Köster et al., 1998).

EXPERIMENTAL

The analytical procedures applied are reported in detail by Kohnen et al. (1990b), Köster et al. (1997) and van Kaam-Peters and Sinninghe Damsté (1997). In brief, the extraction and fractionation comprises the following main steps: (1) Soxhlet extraction with a dichloromethane (DCM)/methanol (MeOH) mixture (7.5:1 v/v); (2) precipitation of asphaltenes in heptane; (3) fractionation of an aliquot of the maltenes (ca. 200 mg, after addition of four standards) by column chromatography over activated alumina with hexane/DCM (9:1 v/v) and DCM/MeOH (1:1 v/v) into an apolar and polar fraction, respectively; (4) fractionation of ca. 10 mg of the apolar fractions into four fractions (A1 to A4) by thin layer chromatography on Ag⁺-impregnated silica plates according to the retention behaviour of the standards using hexane as developer; (5) desulfurisation of polar fractions by refluxing in ethanol under addition of Raney Nickel (after addition of 2,3-dimethyl-5-(1,1-dideutero-hexadecyl)thiophene as internal standard), separation of released apolar hydrocarbons over a small alumina column with hexane/DCM (9:1 v/v), hydrogenation at room temperature with PtO₂ as catalyst and (6) separation of n-alkanes in saturated hydrocarbon fractions and desulfurised polar fractions for GC–IRMS by aduction on a molecular sieve (silicalite; West et al., 1990) in a small column with dry cyclohexane as eluent, release of adducted n-alkanes by dissolution of the silicalite in HF, and collection in hexane (after neutralisation with a NaCO₃ solution). In some cases, TLC fractions were further separated to improve the resolution for GC–IRMS analyses.

The obtained fractions were analysed by gas chromatography on a Hewlett Packard 5890 instrument with on-column injector, flame ionisation detector (FID) and sulfur-selective flame photometric detector (fused silica capillary column 25 m × 0.32 mm coated with 0.12 μm CP-Sil 5, helium as carrier gas, oven programmed from 70 to 130°C at 20°C/min and from 130 to 310°C at 4°C/min, final temperature held for 15 min). Analyses by gas chromatography–mass spectrometry (GC–MS) on a Hewlett Packard 5890 connected with VG Autospec Ultima Q mass spectrometer (operated at 70 eV, cycle time 1.8 s, range m/z 50–800, resolution 1000) were performed under the same chromatographic conditions as described above.
Fig. 2. Gas chromatograms (FID) of bitumen fractions of black shales from Krepak, Skole unit: (a–d) KR93-08; (e–h) KR93-15. The panels display (from top to bottom) fractions containing mainly saturated hydrocarbons [A1; (a) and (e)], alkenes, monoaromatic compounds and thiophenes [A2; (b) and (f)], sulfides [A4; (c) and (g)] and alkanes released by desulfurisation of the polar fractions (d and h).

Key: IS: internal standard, filled circles: n-alkanes (numbers of carbon atoms for selected n-alkanes are given). Two major peaks in (g) belong to two stereoisomers of a C_{30} pentacyclic thiolane formed by cyclisation and sulphurisation of an all trans, regular polypropenol (Poinsot et al., 1997).
Fig. 3. Gas chromatograms (FID) of bitumen fractions of black shales from Straszydle [ST93-08, (a)–(d)] and Futoma [E3-32, (e)–(h)], Skole unit. The panels display (from top to bottom) fractions containing mainly saturated hydrocarbons [A1; (a) and (e)], alkenes, monoaromatic compounds and thiophenes [A2; (b) and (f)], sulfides [A4; (c) and (g)], and alkanes released by desulfurisation of the polar fractions (d and h). Key: IS: internal standard, filled circles: n-alkanes (numbers of carbon atoms for selected n-alkanes are given).
Compounds were quantified by comparison of their FID signal with that of an internal standard, or by integration of the corresponding signals in ion chromatograms if correction factors for the specific response in the mass spectrometer were available. For GC–MSMS analyses the gas chromatograph was equipped with a 60 m CP5 Sil-5CB-MS capillary column (ID 0.25 mm, 0.25 μm film thickness). The oven was programmed from 60 to 200°C at 15°C/min and from 200 to 310°C at 1.5°C/min (final temperature held for 10 min). Dissociation of parent ions was induced by argon, parent–daughter transitions were analysed with 20 ms settling and 80–100 ms sampling periods (total cycle time ca. 1 s).

For gas chromatography–isotope ratio monitoring mass spectrometry (GC–IRMS) the effluent from the gas chromatograph (chromatographic conditions as above) was directly transferred into a combustion oven. The carbon isotope composition of the CO₂ was monitored on-line by a Delta C GC–IRMS system (for detailed description see Hayes et al., 1990). As standard, spikes of CO₂ with known ¹³C content were directly let into the mass spectrometer. Data are reported in (¹³C notation relative to the PDB standard.

RESULTS AND DISCUSSION

The samples described in this paper were selected from a large set of samples analysed for bulk geochemistry and source rock potential (Köster et al. 1998). Bulk data of selected samples are given in Table 1. The selected samples are rich in organic matter (TOC 4.8 to 14.6%). The total sulfur content varies between 1.5 and 5.2%, 18 to 59% of it being organic sulfur. The low maturity of samples from Skole unit is indicated by low Rock Eval Tₘₚ₅ values (395 to 418°C). Subtle differences in maturity are shown by variations of the 17β,21β(H)/ (17β,21β(H) + 17α,21γ(H)) homohopane ratio. A higher maturity for the two samples from Pre-Dukla- and Dukla units (RR90-21 and TY91-11, Table 1) is indicated by the absence of 17β,21β(H) homohopanes, 22S/(22S + 22R) homohopane ratios near 0.5 and Tₘ₅₃ values around 430°C. This paper concentrates on the comparison of immature black shales from the Skole unit with high (e.g. Krepak KR93-15, Straszynle ST93-08 and Wyzne WY93-09A; Fig. 1) and low HI values (Krepak KR93-08, Futoma E2-32), and with different characteristics in their bulk and molecular geochemistry. Figures 2–4 give an overview over the molecular composition of biomarker fractions obtained from the extract of the immature samples from Skole unit.

Free and sulfur-bound n-alkanes

Normal alkane skeletons are present both as free hydrocarbons and in macromolecularly sulfur-bound form. Their relative abundance in the free
saturated hydrocarbon fractions (A1) depends strongly on the maturity of the samples. In the very immature samples from the Skole unit they are present in relatively low abundance compared to the polycyclic hydrocarbon biomarkers (Figs 2–4). They are much more prominent in shale extracts from the Pre-Dukla and Dukla units as a result of the higher maturity of these samples (Fig. 5; see also ten Haven et al., 1993, Kruge et al., 1996 and Bessereau et al., 1997).

The n-alkane distributions of the black shales from the Skole unit differ not only between the samples, but also between the free and sulfur-bound moieties. The samples KR93-08 [Fig. 2(a) and Fig. 6(a)], WY93-09A [Fig. 4(a)] and E2-32 show a distinctive odd-over-even carbon number predominance with carbon preference index (CPI) values > 3 (after Bray and Evans, 1961), indicating a strong prevalence of vascular plant derived n-alkanes (Eglinton and Hamilton, 1963) with a minor contribution of n-alkanes of marine origin. The samples KR93-15 [Fig. 6(c)] and ST93-08 contain a much higher contribution of n-alkanes of a marine origin. This is revealed by the higher abun-

![Fig. 5. Gas chromatograms (FID) of saturated hydrocarbon fractions (A1) of black shales: (a) Pre-Dukla unit, Rudawka Rymanowska (sample RR90-21: 4.8% TOC, HI 574 mg HC/g TOC); (b) Dukla unit, Tylawa (sample TY91-11: 6.6% TOC, HI 688 mg HC/g TOC); filled circles: n-alkanes (numbers of carbon atoms for selected n-alkanes are given), open circles: 17β,21α(H) hopanes.](image-url)
dance of homologues with low carbon numbers and by the lower CPI values < 1.4. In contrast, n-alkanes released by desulfurisation of the polar fractions of the KR samples show an even-over-odd carbon number predominance [CPI values of 0.71 and 0.82; Fig. 6(b)]. This suggests a predominantly marine origin from functionalised precursor molecules, which have become sulfurised during early diagenesis. Numerous straight chain fatty acids, alcohols and alkenes have been found in microalgae (reviewed by Volkman et al., this volume) many of them possessing an even-numbered carbon chain. Different contributions to free and sulfur-bound n-alkanes are evident in the case of the samples from Futoma (E2-32) and Wyzne (WY93-09A) as shown by the large difference in CPI values (Table 1). These samples have elevated concentrations of sulfur-bound C_{29} and C_{31} homologues, respectively [Fig. 2(h) and Fig. 3(d)]. The pattern of sulfur-bound n-alkanes of sample ST93-08 [Fig. 6(d)] is even more irregular, with C_{27} and C_{29} n-alkanes slightly dominating over the neighbouring homologues and a higher relative abundance of C_{18}, C_{21}, C_{24}, C_{33}, C_{37} and C_{38} n-alkanes. This indicates an input of functionalised n-alkane skeletons with specific chain lengths. Possible sources are n-alkanes which have been found in several microalgae (reviewed by Volkman et al., this volume). For example, the precursors for the sulfur-bound C_{37} and C_{38} n-alkane skeletons are probably C_{37} and C_{38} alkenones and alkenes biosynthesised by prymnesiophyte algae (e.g. de Leeuw et al., 1980; Volkman et al., 1980) which can become sulfur-bound to the kerogen (Sinninghe Damsté et al., 1988; Schaeffer et al., 1995; Koopmans et al., 1997).

The different sources for n-alkanes are also confirmed by their stable carbon isotope compositions. In KR93-08 [Fig. 7(a)] the 13C contents of C_{22} to C_{31} n-alkanes shows a smooth decrease with increasing chain length from ca. 28 to 30.5%. Such distributions have been found in leaf lipids of plants (Collister et al., 1994) which is in agreement with the high CPI values of the n-alkanes in this sample. In contrast, the carbon isotopic composition of the sulfur-bound n-alkanes in this range show a zigzag pattern. The 13C values of odd-carbon-numbered homologues are nearly identical with those of free n-alkanes, whereas 13C values of the even-carbon-numbered compounds (< C_{31}) are less negative (between 13C -26 and -28%). This difference increases with increasing chain length from ca. 1 to 4%. The n-alkanes from the Monterey Formation studied by Schouten et al. (1998) show a similar relationship of isotope values like sample KR93-08. According to these authors it results from a mixture of sulfur-bound n-alkanes from marine and terrigenous sources. They propose n-alkanones with an odd-over-even predominance as precursors of the sulfur-bound alkanes. These alkanones can be formed by oxidation of terrestrial n-alkanes.
(Volkman et al., 1983) and can be sulfurised under mild conditions by sulfurisation of the keto group (Schouten et al., 1994b).

The 13C content of the free n-alkanes in the samples KR93-15 and ST93-08 differ from that of sample KR93-08. It remains constantly close to -30% or even slightly increases with carbon number [Fig. 7(b) and (c)]. The carbon isotope values of sulfur-bound n-alkanes in ST93-08 again show a zig-zag pattern. However, in this samples the isotopically heavier, even carbon numbered homologues are close to the carbon isotope composition of the free n-alkanes. These data suggest that the free and the sulfur-bound even carbon numbered n-alkanes show hardly any terrestrial contribution, which confirms a predominantly marine source as inferred from the distributions of free n-alkanes. In KR93-15 the C$_{19}$ and C$_{25}$ n-alkanes are most depleted with δ^{13}C values near -34% [Fig. 7(b)]. On average the marine sulfur-bound n-alkanes of KR93-15 and ST93-08 are depleted by ca. 3 to 4% compared to those of KR93-08. This corresponds to the difference in δ^{13}C values of other marine biomarkers measured in these samples (see below; Fig. 8).
Acyclic isoprenoids

Pristane (Pr) and phytane (Ph) are abundant in the saturated hydrocarbon fractions of the immature samples investigated and dominate over the C₁₇ and C₁₈ n-alkanes. The Pr/Ph ratio is < 1 in the samples with high HI, but > 1 in the low HI black shale from Krepak and in most of the more mature samples from the Silesian, Pre-Dukla and Dukla units (Fig. 5; see also Krüger et al., 1996). Upon desulfurisation of the polar fractions, Ph is released in relatively high amounts but Pr is almost absent. The carbon isotope composition of Pr, free Ph and sulfur-bound Ph varies between -33.9 (KR93-15) and -28.6‰ (KR93-08, Fig. 8). These compounds are more depleted in ¹³C in samples KR93-15 and ST93-08 than in the other three immature black shales. The observed isotopic variation is largest for the sulfurised Ph skeletons, perhaps due to their origin from more specific, functionalised precursors. The δ-values of Pr and Ph are up to ca. 2‰ more depleted than the average δ-values of the marine n-alkanes. This can be explained by the carbon isotope difference between isoprenoids and straight chain carbon skeletons (Monson and Hayes, 1982; Hayes, 1993; Schouten et al., 1998).

C₂₅ highly branched isoprenoids (HBIs) possessing a 2,6,10,14-tetramethyl-7-(3-methylpentyl)-pentadecane carbon skeleton are regarded as biomarkers for diatoms (e.g. Nichols et al., 1988; Summons et al., 1993; Volkman et al., 1994). Sulphurisation is a major diagenetic pathway that preserves the carbon skeletons of the (poly-)unsaturated precursor molecules (Sinninghe Damstè et al., 1989; Kohnen et al., 1990a; Köster et al., 1995). In two samples discussed in this paper (Futoma E2-32 and Wyzne WY93-09A) C₂₅ HBI skeletons are dominant constituents of the bitumen fractions [Fig. 3(e)-(h) and Fig. 4]. They occur as saturated hydrocarbons, thiophenes, sulfides and in macromolecularly bound form. Sample RR90-21 contains the saturated C₂₅ HBI (Fig. 5). Köster et al. (1995) have shown that C₂₅ HBIs are abundant in black shale samples from Lower Menilite Formation in the Skole unit which are associated with diatomites or contain biogenic silica (present as opal-CT). In these samples concentrations of C₂₅ HBIs are up to 3 mg/g TOC. About 90% of these HBI skeletons are sulphurised and occur predominantly as cyclic sulfides. Recently, a novel C₂₆ HBI alkane and C₂₆ HBI thiophenes have also been identified in these samples (Rospondek et al., 1997).

A detailed study of free and sulphurised C₂₅ HBIs in Menilite shale samples revealed a broad range of isotope values between -33.4 and -24‰ (Fig. 8). The difference within a single sample is largest between the free alkane (-33.5‰) and thiophenes (-24 to 25.5‰) of sample E2-32. Also in the other samples investigated the alkane is always most
depleted in 13C and the thiophenes are most enriched. This points to an obviously systematic variation of the carbon isotope values among the different HBI moieties (Köster, unpublished data). It suggests that the HBI alkane was biosynthesised as such and that the variable abundance and isotopic composition of different HBI species may be due to different unsaturated HBI precursor molecules which differed in the number and position of the double bonds. Our knowledge concerning the occurrence and isotopic composition of (poly-)unsaturated C$_{25}$ HBIs and other pseudohomologues in different diatom species or strains (e.g. Volkman et al., this volume) or during different life phases and growth conditions (e.g. Hird and Rowland, 1995; Rowland et al., 1995) is still too limited to further interpret these data.

Steranes

Steranes and sterenes are present in all A1 and A2 fractions, but the relative concentrations vary considerably. They are especially abundant in sample WY93-09A. The saturated hydrocarbon fraction is dominated by a complex mixture of C$_{26}$ to C$_{30}$ 5α- and 5β(20R)-steranes, 4α- and 4β-steranes and dinosteranes [Fig. 4(a)]. In case of sample ST93-08 [Fig. 3(a)] 4α-desmethylsteroanes and 24-ethyl-5α-cholestan e are the most abundant steranes. Remarkably, they are followed by unusually abundant 24-nor-5α-cholestan e and 24-methyl-27-nor-steranes and by dinosteranes. Due to the low maturity of these samples, the dominant steranes all posses 14α,17α(H)-20R stereochemistry. 5β isomers are present but occur in low concentrations.

The very particular sterane composition of ST93-08 sample has been studied in detail by GC–MSMS analyses (Fig. 9 and Table 2). The assignment of the dominant C$_{26}$ sterane to 24-nor-5α-cholestan e (1 in Fig. 9) is based on the retention behaviour relative to the other steranes (Moldowan et al., 1991; Peters and Moldowan, 1993). Traces of 27-nor-5α-cholestan e are also present. According to Holba et al. (1997) the occurrence of 24-norsteranes in oils and sedimentary rocks is age related and maximises in Oligocene or younger, diatom-derived siliceous source rocks deposited in high latitudes. Precursors for 24-norsteranes were found in sponges (e.g. Itoh et al., 1983) and extant marine algae, e.g. a diatom (Morris and Carre, 1984), which points to an origin from eukaryotes. In a dinoflagellate (Goad and Withers, 1982) large amounts of 24β-27-norergostanol are accompanied by small amounts of 24-nor-cholestrol, suggesting a common biosynthetic pathway of these compounds (Giner, 1993).

The most abundant C$_{27}$ sterane in sample ST93-08 is 24-methyl-27-nor-5α-cholestan e (4 in Fig. 9). Schouten et al. (1994a) identified this sterane in several silica-rich Miocene sediments. They discuss an origin from ocellosterol or patinosterol which possess the same side chain as 24-methyl-27-nor-5α-cholestan e. Dinoflagellates or diatoms are possible sources for this sterane and a biosynthetic relationship with 24-nor-5α-cholestan e has been suggested. These compounds have been reported from two Miocene diatomaceous sediments, the Monterey Formation (U.S.A.) and the Onnagawa Formation (Japan; see Schouten et al., 1994a). In good agreement, they occur in Mielite black shales associated with diatomites. The investigated samples also contain dinosteranes and C$_{25}$ HBIs suggesting the presence of both dinoflagellates and diatoms. There are two additional C$_{27}$ steranes present in sample ST93-08 which are assigned to isomers of 23-methyl-24-nor-5α-cholestan e (2 in Fig. 9). The elution order before 5α-cholestan e (3 in Fig. 9) is consistent with a shorter, branched side chain. However, this identification is tentative and has to be confirmed. Interestingly, diasteranes are almost absent despite the carbonate-free, siliciclastic lithology of this sample.

The trace for the C$_{28}$ desmethylsteranes (transition 386 → 217 in Fig. 9) shows four compounds in addition to 24-methyl-5α-cholestan e. They are tentatively identified as stereoisomers of 23,24-dimethyl-27-nor-5α-cholestan e (5 in Fig. 9). This compound contains two chiral centres in the side chain which (in analogy to the side chain of dinosteranes) may explain the gas chromatographic resolution of four 23 and 24 S and R isomers. Additionally, the relatively early elution (two of these compounds elute before the 24-methyl-5α-cholestan e and shortly after the 24-methyl-27-nor-5α-cholestan e) is consistent with the presence of a methyl group in the inner part of the side chain. The C$_{29}$ steranes (Fig. 9, transition 400 → 217) comprise 24-ethyl-5α-cholestan e and four isomers of 4-desmethylsteroanes (8 and 7 in Fig. 9, respectively). An origin from dinoflagellates living above the chemocline has been suggested by Putschew et al. (1995) who tentatively identified a 23,24-dimethylcholesta-3,5,22-triene in sediments of Lake Cadagno (Switzerland). Furthermore, 24-n-propyl-5α-cholestan e (9 in Fig. 9) is found in small amounts. This compound is considered to identify an input from marine Chrysophyceae algae (Moldowan et al., 1990).

The C$_{27}$ to C$_{29}$ steranes described above all have 4α-methyl counterparts as shown in the traces of M$^+$→231 transitions (Fig. 9). Dinosteranes (four epimers of 4,23,24-trimethylcholestan es; 10-13 in the 414 → 231 trace) are known as specific biomarkers of dinoflagellates (Summons et al., 1987), whereas other 4-methyl-24-alkylsteranes can also originate from other groups of algae (Peters and Moldowan, 1993 and references therein).

The discussed tentative identification of the novel steranes and 4-methylsteranes provides a rational,
systematic explanation of the observed distributions. It is also consistent with the abundancies of 24-nor- and 24-methyl-27-norsteranes. These classes of steranes are expanded by novel, possibly biosynthetically related compounds by virtue of additional methyl groups at C-23 and C-4. The geological setting of the samples suggest a common source from diatoms. An origin from dinoflagellates has to be considered as well since a methylation at C-23 is believed to be restricted to these algae (Giner, 1993). The fact, that the sample with the highest occurrence of these steranes (ST93-08) almost lacks C25 HBIs, but contains abundantly dinosteranes, supports this possibility.
molecules contained in polar fractions. In the case with inorganic sulfur species yielding a variety of cursor bacteriohopanepolyols (Ourisson et al., 1997), is selectively preserved in sulfurised form and phytically related samples. The sterane compositions are thus highly higher amounts of 5α-steranes and 4α-methyl-5α-ster-anes. More simple distributions lacking 24-methyl-27-norsteranes and related compounds were also found. The sterane compositions are thus highly variable, even between lithologically and stratigraphically related samples.

Due to the complexity of the fractions only few reliable carbon isotope values of steroids are available. 5x-cholastane (20R) in E2-32 has a δ13C value of -28.5‰ (Fig. 8). In WY93-09A the δ13C value of steranes range from -33.2 to -31.9‰ (average -32.4‰).

<table>
<thead>
<tr>
<th>Peak</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24-nor-5α-cholastane 20R</td>
</tr>
<tr>
<td>2</td>
<td>23-methyl-24-nor-5α-cholastane 20R*</td>
</tr>
<tr>
<td>3</td>
<td>5α-cholastane 20R</td>
</tr>
<tr>
<td>4</td>
<td>24-methyl-27-nor-5α-cholastane 20R</td>
</tr>
<tr>
<td>5</td>
<td>23,24-dimethyl-27-nor-5α-cholastane 20R*</td>
</tr>
<tr>
<td>6</td>
<td>24-methyl-5α-cholastane 20R</td>
</tr>
<tr>
<td>7</td>
<td>23,24-dimethyl-5α-cholastane 20R (4-desmethyldinosteranes)</td>
</tr>
<tr>
<td>8</td>
<td>24-ethyl-5α-cholastane 20R</td>
</tr>
<tr>
<td>9</td>
<td>24-n-propyl-5α-cholastane 20R</td>
</tr>
</tbody>
</table>

Table 2. Identification of steranes in an immature black shale from Skole unit (Fig. 9). The 4α-methyl counterparts of the listed compounds are marked in Fig. 9 by an asterisk. All steranes possess 14α,21α(H) configuration; stereochemistry of dinosteranes after Peters and Moldowan (1993, p. 195).

Similar sterane distributions, as described for sample ST93-08, were also found in other black shales from the Skole unit associated with dia-томaceous sediments. The most immature samples contain, in addition, 4β-methylsteranes as well as higher amounts of 5β-steranes and 4-methyl-5β-ster-anes. More simple distributions lacking 24-methyl-27-norsteranes and related compounds were also found. The sterane compositions are thus highly variable, even between lithologically and stratigraphically related samples.

Due to the complexity of the fractions only few reliable carbon isotope values of steroids are available. 5α-cholastane (20R) in E2-32 has a δ13C value of -28.5‰ (Fig. 8). In WY93-09A the δ13C value of steranes range from -33.2 to -31.9‰ (average -32.4‰).

Hopanoids

The immature black shales from the Skole unit are characterised by the only moderate to low abundance of free homohopanes compared to other biomarkers. In contrast, the C35 homohopane skeleton is selectively preserved in sulphurised form and often dominates the sulfide and desulfurised polar fractions, e.g. in sample KR93-15 [Fig. 2(g) and (h)] and ST93-08 [Fig. 3(c) and (d)]. Due to the large number of functionalities in the side chain, the precursor bacteriohopanepolys (Ourisson et al., 1979; Rohmer et al., 1992) can react intramolecularly with inorganic sulfur species yielding a variety of low-molecular-weight organic sulfur compounds (see Sinninghe Damsté et al., 1995; Köster et al., 1997 and references therein). Intramolecular sulfur-bonds can link these biomarkers to macromolecular organic matter (kerogen, asphaltenes and macromolecules contained in polar fractions). In the case of the sample KR93-15 total concentration of C35 homohopane skeletons is ca. 200 μg/g TOC. Only ca. 10% of these compounds is present as saturated hydrocarbon, whereas ca. 39% occur as hopanoid sulfides, ca. 22% as thiophenes and ca. 29% are sequestered in the polar fraction. The hopanoid thiophenes (Valisolalao et al., 1984) and thiolanes (Schmid, 1986) with the sulfur atom incorporated at the end of the side chain [Fig. 2(g)] are the by far most abundant species. They are accompanied by smaller amounts of compounds with the sulfur in the side chain attached to the C-34 position. Lower homologues of sulphurised hopanoids are in most cases absent except for ST93-08 where C33 and C34 homologues are relatively abundant [Fig. 3(c)]. In KR93-15, minor amounts of C36 and C37 homohopanes were released from polar fractions [Fig. 2(h)]. The selective preservation of homohopanes with an intact side chain shows that sulfurisation took place prior to any extensive oxidative degradation. Thus, it points to anoxic conditions (Moldowan et al., 1992; Sinninghe Damsté et al., 1995) and activity of sulfate reducing bacteria in the water column and/or the sediment. Free homohopanes and homohop-17(21)-enes in the black shales from Skole unit do not show a strong predominance of the C35 homohopane. The saturated hydrocarbon fractions (A1) of the samples from Rudawka Rymanowska (RR90-21) and Tylawa (TY92-11) contain abundant C29 to C35 hopanes predominantly with the 17α,21β(H) configuration (Fig. 5). This is explained by the higher maturity of these samples. It is likely that these free homohopanes result from initial sulphurisation of functionalised C35 homohopanes during early diagenesis and subsequent release by desulfurisation and side chain cleavage without yielding a prevalence of C35 homologues (see Köster et al., 1997, for a detailed discussion).

The carbon isotope composition of sulfur-bound C35 homohopanes varies considerably among the samples between δ13C -36.2 and -26.1‰. These values correspond to the average δ13C ratios of the free homohopanes (Fig. 8). A predominantly cyanobacterial origin of the extended hopanoids is likely since the carbon isotope ratios are in the same range as those found for biomarkers originating from organisms in the upper photic zone. However, a minor contribution from other prokaryotes (e.g. chemosynthetic methanotrophic bacteria) is possible.
Fig. 10. Mass spectrum (background subtracted) of a compound strongly depleted in 13C (δ^{13}C -56.9%). It is tentatively identified as 13-methylhop-17(21)-ene. An origin from methanotrophic bacteria is suggested. Sample: Krepak KR93-15.

The abundance and isotopic composition of the C$_{30}$ hopanes and hopenoles clearly indicate that they are not related to the hopanoids with extended side chain. There are two other compounds in KR93-15 which are significantly depleted in 13C (Fig. 8). Neohop-13(18)-ene has a δ^{13}C value of -43.5%.

The most negative δ^{13}C value of ca. -57% was found for a compound in the unsaturated hydrocarbon (A2) fraction which elutes just after hop-17(21)-ene, the most abundant alkene in this sample. This compound is tentatively identified as 13-methylhop-17(21)-ene, based mainly on the similarity of its mass spectrum (Fig. 10) with that of hop-17(21)-ene. The mass spectrum shows a molecular ion at m/z 424 and a fragment at m/z 381 resulting from the loss of the isopropyl group. Both are 14 Da higher than corresponding fragments of hop-17(21)-ene suggesting the presence of an additional methyl group. The AB-ring fragment at m/z 191 and the E-ring fragments at m/z 135 and 136 are not shifted. The base peak at m/z 245 corresponds to m/z 231 in the hop-17(21)-ene spectrum and results from the cleavage through the C- and D-ring. These fragmentation indicate an additional methyl group at C-11, C-12 or C-13 of the C-ring. The increased intensity of m/z 245 (compared to the m/z 231 fragment in the mass spectrum of hop-17(21)-ene) and the lower intensity of m/z 191 are best explained by locating the additional methyl group at C-13. In that case, only bonds between quaternary carbon atoms have to be cleaved to yield the m/z 245 fragment.

In sample ST93-08 the carbon isotope composition of only one of these hopanoid biomarkers could be measured due to the complexity of the bitumen fractions. However, the trace of the 45/44 mass ratio from GC--IRMS measurements indicates that the other hopanoid compounds discussed are significantly depleted in 13C in this sample as well.

Possible sources for 13C depleted biomarkers are chemoautotrophic bacteria or methanotrophic bacteria (e.g. Freeman et al., 1990; Collister et al., 1992; Summons et al., 1994). Chemoautotrophic bacteria are depleted relative to their carbon source up to 27% (Poppet al., 1989) depending on the CO$_2$ concentration. Assuming a 13C depletion of only 20% (Freeman et al., 1990) and considering the measured δ-value of -57% for the most depleted hopanoid, the CO$_2$ source should have a carbon isotope ratio in the order of δ^{13}C -34%. This appears to be unlikely. Therefore, it is most plausible that the 13C depleted compounds are derived from methanotrophs, especially since A-ring methylated hopanoids are rather specific for methanotrophs (Zundel and Rohmer, 1985; Summons and Jahnke, 1992; Summons et al., 1994). In the marine environment, methanogenic bacteria produce methane with an extremely low 13C content (δ^{13}C -110 to -60%) predominantly via the CO$_2$ reduction pathway (Whiticar et al., 1986). This methane serves as carbon source for methanotrophic bacteria which, therefore, also can be strongly depleted in 13C. For hopanoid biomarkers
The δ13C content of the lipids of methanotrophs will strongly depend on the efficiency of methane utilisation and its isotopic composition. In case of sample KR93-15 the δ-value of ca. −5% may appear to be the best estimate of the isotopic composition of biomarkers derived from methanotrophs since the particular structure of the 13-methylhop-13(21)-ene makes a mixing of this compound from multiple sources rather unlikely. It cannot be excluded that the other biomarkers depleted in 13C result partly from a mixture of compounds having multiple biological sources and very different carbon isotope compositions as shown for the hop-17(21)-ene. In saturated hydrocarbon fractions, 28,30-dinorhopane is dominant in sample KR93-15 [Fig. 2(e)] and a major compound in E2-32 [Fig. 3(e)].

The 13C content of the lipids of methanotrophs δ13C values as low as −85% have been found (Collister et al., 1992).

The δ13C content of the lipids of methanotrophs will strongly depend on the efficiency of methane utilisation and its isotopic composition. In case of sample KR93-15 the δ-value of ca. −5% may appear to be the best estimate of the isotopic composition of biomarkers derived from methanotrophs since the particular structure of the 13-methylhop-13(21)-ene makes a mixing of this compound from multiple sources rather unlikely. It cannot be excluded that the other biomarkers depleted in 13C result partly from a mixture of compounds having multiple biological sources and very different carbon isotope compositions as shown for the hop-17(21)-ene.

In saturated hydrocarbon (A1) fractions, 28,30-dinorhopane is dominant in sample KR93-15 [Fig. 2(e)] and a major compound in E2-32 [Fig. 3(e)]. Its carbon isotope composition is δ13C −30.1‰ and −27.8‰, respectively. 28,30-Dinorhopane is often found in paleoenvironments with anoxic bottom water and a major diatom input. The source of this compound is not known since a biological precursor has not yet been identified. Schoell et al. (1992) suggested chemotrophic bacterial lipids as precursors for the dinorhopane present in a Monterey oil since this compound is depleted in 13C by ca. 6% compared to algal compounds. In the case of the two Menilite black shale samples analysed the carbon isotope composition of 28,30-dinorhopane is even slightly heavier than that of algal biomarkers (Fig. 8) and does not support this suggestion. Schouten et al. (1998) observed highly variable carbon isotopic compositions of this compound. As source organisms they proposed sediment dwelling bacteria using pore water CO2. They suggested that 13C enriched dinorhopane was biosynthesised during periods when the pore water CO2 became enriched in 13C due to intensified methanogenesis. Since the carbon isotope composition of dinorhopane could only be analysed in two samples and δ13C values compared to other compounds are not exceptional, it is not possible to support or reject this interpretation. Like in other studies, dinorhopane does not occur in sulfur-bound form. This strongly supports that it was biosynthesised as saturated hydrocarbon since the presence of a functional group would occur in sulfur-bound form. This strongly supports that it was biosynthesised as saturated hydrocarbon since the presence of a functional group would make the precursor prone to sulfurisation in this type of sediments.

Terrigenous triterpenoids

The presence higher plant-derived triterpenes has been used (among others) as an argument to establish the Menilite Formation as source rock for most of the Carpathian overthrust oils (ten Haven et al., 1993). In the samples studied oleanesenes are abundant in KR93-08 [Fig. 2(a)]. The sulfide fraction of this sample [Fig. 2(c)] contains a poorly resolved, complex mixture of C30 compounds which are most likely triterpenoid sulfides. The interpretation of a terrigenous source of these compounds is in accordance with the high CPI value of free n-alkanes, an increased Pr/Ph ratio and a low HI indicative for the increased contribution of higher land plant-derived organic matter to this sample. Small amounts of 18a(H)-oleanane are frequently present in the samples from the Pre-Dukla and Dukla units [e.g. in RR90-21, Fig. 5(a); see also Kruege et al., 1996] indicating that a minor contribution from angiosperms was almost ubiquitous.

Isorenieratene derivatives

Isorenieratene is a very specific biomarker derived from the brown coloured strain of Chlorobiaceae (Overmann et al., 1992; Koopmans et al., 1996 and references therein). These photoautotrophic green sulfur bacteria require both light and free hydrogen sulfide. Therefore, their habitat is at the chemocline within the lower photic zone. The specific pathway of CO2 fixation via the reversed tricarboxylic acid cycle leads to an anomalous enrichment of their biomass in 13C (e.g. Quandt et al., 1977). Intramolecular reactions and sulfur incorporation yields a large number of diagenetic products of isorenieratene found in sedimentary rocks (Koopmans et al., 1996; van Kaam-Peters et al., 1997a). In the polyaromatic fraction of the black shale from Futoma (E2-32; Fig. 11), the main isorenieratene derivatives are isorenieratane, two triaromatic C40 carotenoids, C32 and C33 diarylisoprenoids (resulting from the expulsion of xylene and toluene, respectively, from isoprenoid chain of the C40 precursor molecule), and triaromatic C32 and C33 compounds. Their carbon isotope ratio of ca. δ13C −17 to −19‰ is ca. 11 to 13‰ higher compared to compounds of an algal origin, e.g. the isoprenoid trimethylchroman (Sinninghe Damsté et al., 1987), steranes or Ph (Fig. 8). This, together with the structural evidence, verifies an origin from photoautotrophic green sulfur bacteria. Isorenieratene derivatives have been found also in other samples from locations in all of the tectonic units investigated (marked by stars in Fig. 1).

Palaeoenvironmental implications

The biomarker composition of the black shales studies shows that algae were important primary producers. The contribution of different groups to the sedimentary organic matter apparently varied widely as shown by the variable abundance of dinosteranes and C25 HBIs identifying dinoflagellates and diatoms, respectively. The presence of different other groups of algae is indicated, for example, by the abundance of sulfur-bound n-alkane skeletons with specific carbon numbers. Additionally, cyanobacteria have played an import-
Fig. 11. Partial gas chromatogram of a polyaromatic fraction (A3 + A4) of a black shales from Skole unit (Futoma E2-32). Indicated carbon isotopic compositions of individual compounds were measured separately on subfractions.

ant role. Their significance is not apparent from saturated hydrocarbon fractions of the immature shales, since their biomarkers, C_{35} homohopanoids, are largely sequestered into the more polar fractions.

The selective preservation of C_{35} homohopane with intact side chain, C_{25} HBIs, n-alkanes of predominantly marine origin and Ph by inter- and intramolecular sulfurisation give evidence for an intensive bacterial sulfur cycle and presence of sulfur-reducing bacteria in an anoxic environment. Despite the fact that sedimentary rocks are carbonate-free and the clay mineral composition is dominated by smectite, a relatively high percentage (i.e. 30 to 60\%) of the sulfur is present in an organic form. It is suggested that low sedimentation rates in starved slope or basin situations were favourable for this intense sulfurisation. In such sedimentary settings autochthonous, reactive organic matter can become concentrated resulting in the deposition of very TOC-rich sediments with high hydrogen index values.

Isorenieratene derivatives were found in black shales from all overthrust units. The presence of these very specific biomarkers for green sulfur bacteria indicates that euxinic conditions extended, at least temporarily, into the photic zone. It favours the model of topographically restricted sub-basins rather than upwelling conditions, and suggests that preservation played an important role in the accumulation of organic matter (Sinninghe Damsté and Köster, 1998).

The distribution and stable carbon isotope composition of individual biomarkers provides additional information on the sources of organic matter and has important implications for the palaeoenvironmental reconstruction. The \(\delta^{13}C \) values found for biomarkers in the Menilite Formation range widely from ca. \(-57\%\) to \(-17\%\) (Fig. 8). The majority of the biomarkers studied fall in a range between ca. \(-27\%\) and ca. \(-35\%\). Most of them are only slightly more depleted in \(^{13}C \) than the corresponding kerogens and asphaltene fractions. The carbon isotope ratio of free steranes and the isoprenoid trimethylchroman (Sinninghe Damsté et al., 1987) are near \(-30\%\) which is a good estimate for the average carbon isotope composition of algal lipids.

The hopanoid biomarkers depleted in \(^{13}C \) (\(\delta^{13}C \) ca. \(-57\%\) to \(-43\%\)) are attributed to methanotrophic bacteria. Interestingly, in the two samples containing \(^{13}C \) depleted hopanoids (KR93-15 and ST93-08) most other biomarkers are depleted up to \(7\% \) compared to the same compounds in the three other immature black shales studied (Fig. 8). The difference is largest for sulfur-bound Ph and C_{35} homohopane, but is also observed for free Ph, homohopanes, 28,30-dinorhopane and the sulfur-
bound (marine) n-alkanes. Also the extract fractions, asphaltenes and kerogens of KR93-15 and ST93-08 are significantly depleted in 13C compared to all other samples from Menilite Formation studied by Köster et al. (this volume) and to the Carpathian overthrust oils (ten Haven et al., 1993). In the case of Ph an origin from various marine and terrigenous sources (ten Haven et al., 1987) is possible. Among many other sources (see e.g. Volkman and Maxwell, 1986, Pr and Ph have also been found in pyrolysis products (Rowland, 1990) and complex lipids (Volkman and Maxwell, 1986 and references therein) of methanogens, but an algal source appears to be most common and likely. The C_{35} homohopanes and $28,30$-dinorhopane however are likely derived from a more specific prokaryotic source.

To explain these differences between samples, a change in the isotope effect associated with the fixation of inorganic carbon has to be considered. This depends mainly on the concentration and the 13C content of the aquatic CO$_2$ (Hayes, 1993). It has been suggested that a decrease of atmospheric CO$_2$ led to increasing δ^{13}C values of Oligocene-Miocene kerogens (Poppet et al., 1989). Firstly, this would drive the carbon isotope composition of the organic matter in opposite direction and, secondly, a global control on the CO$_2$ budget is expected to be long lasting and therefore should have affected the 13C content of the organic matter in all samples simultaneously. In case of the Menilite Formation, more temporary, occasional or local effects have to be considered which influenced the carbon isotope composition.

A change in the ratio of marine to terrestrial organic matter is not a plausible explanation either. The hydrogen index is an adequate parameter to characterise the bulk organic matter composition of Menilite shale samples. The HI values show a negative correlation with the δ^{13}C values of the saturated hydrocarbon fractions suggesting to represent a mixing and/or oxidation trend (Köster et al., this volume), but the range of δ-values covers 2% only (−28.7 to −26.7%) . However, the saturated hydrocarbon fractions of KR93-15 and ST93-08 do not follow this trend. They are 3–5% more depleted in 13C compared to alkane fractions of other black shales with similar high HI, which clearly demonstrates the exceptional character of these two samples.

Recycling of isotopically light CO$_2$ derived from oxidation of organic matter under conditions of restricted water circulation has been proposed to cause the 13C depletion of the organic matter and carbonate from the Toarcian in SW Germany (Küspert, 1982; Küspert, 1983). This idea has been supported recently by results of a molecular geochemical and stable carbon isotope study (van Kaam-Peters et al., 1997b). In a palaeoenvironmental model for the Toarcian Whitby Mudstone Formation, Sälen et al. (1995) proposed that sulfide and methane oxidising bacteria may have thrived at the chemocline, assimilated isotopically light CO$_2$ and contributed significantly to the sedimentary organic matter. They further suggest, that the occasional introduction of large amounts of CO$_2$ into the upper water column may have increased the carbon isotope fractionation and triggered phytoplankton blooms. However, this increase will indispensably counterbalanced by a decrease when CO$_2$ becomes depleted in course of a bloom, which drives the isotope composition towards higher values. In recent environments a significant depletion in 13C by intense recycling of CO$_2$ (Rau, 1978) appears to be restricted to lakes, thus water bodies with a shallow water column, a limited volume and a very shallow chemocline. Examples are described from Lake Cadagno, Switzerland, (Putschew et al., 1995) and Lake Gogiáž, Poland; (Wachniew and Rozanski, 1997). Santos Neto et al. (1998) found 13C-depleted hopane (13C up to −50.3%), C_{31} homohopanes and a methyl hopane in Cretaceous lacustrine shales and suggested a common origin from chemo- or methanotrophs. In that case, the isotopic composition of pristane, phytane, and carotanes remained unaffected. van Kaam-Peters et al. (1997b) pointed out that in the Black Sea, the classical example for a marine anoxic basin with a shallow chemocline within the photic zone, cycling of CO$_2$ does not play a major role. The δ^{13}C of CO$_2$ decreases by 4% over the upper 65 m of the water column (Freeman et al., 1994). A large increase of the CO$_2$ concentration below 40 m is accompanied by a slight 13C depletion of 0.6% only. The (relatively) high δ^{13}C values of phytoplanktonic lipids in the Recent sediments (Freeman et al., 1994) indicate that the deposited organic matter was produced predominantly in the uppermost part of the water column where the isotopic composition of the dissolved inorganic carbon is controlled by the exchange with atmospheric CO$_2$.

In case of the Menilite Formation we favour the explanation of a temporary overall shift in the marine inorganic carbon towards more 13C depleted conditions. The occurrence of 13C depleted hopanoïd biomarkers derived from methanotrophic bacteria provides circumstantial evidence that bacterial methane was oxidised and recycled into the upper photic part water column to such an extent that the dissolved inorganic carbon and, thus, the organic matter and biomarkers of primary producers became 13C-depleted. Probably, the enhanced operation of this full methane cycle was supported by a shallow chemocline. The fact that, so far, this has been observed only for some Lower Menilite black shales deposited in the Skole basin points out that this was a rather occasional phenomenon.
Acknowledgements—The study received financial support by grants from the German Research Foundation (DFG) to J. K. and by a PIONIER Grant from the Netherlands Organisation for Scientific Research (NWO) to J. S. D. Grants for traveling were given by the Federal Ministry of Education, Science, Research and Technology (BMBF) and the Polish Committee of Scientific Research in frame of a Polish-German co-operation agreement. Analytical assistance was provided by M. Dekker, Dr W. Pool, M. Baas and K. Grice (NIOZ) and A. Schulz (TUC). Logistic support during field work from enterprises of the Polish Oil and Gas Industry is greatly acknowledged. This paper benefitted from the critical and constructive comments of W. Püttermann (Frankfurt) and an unknown reviewer. This is NIOZ contribution No. 3305.

REFERENCES

tat of the Polish Carpathians. In Structure and Prospects
of Alpine Basins and Forelands, eds. P. A. Ziegler and F.
Horváth, Peri-Tethys Memoir 2, Memoires du Museum
National d'Histoire Naturelle Paris 170. Éditions du

Bleicher, J. (1970) "Globigerinids" podmieniutowych margli
globierinowych. "Globigerinae" of the Sub-Menilite
Globigerina Marls. Biuletyn Państwowy Instytut
Geologiczny 221, 134–204 (In Polish with English sum-
mary).

Bray, E. E. and Evans, E. D. (1961) Distribution of n-par-
affin as a clue to recognition of source beds. Geochimica

Collister, J. W., Rieley, G., Stern, B., Eglington, G. and
Fry, B. (1994) Compound-specific δ13C analyses of leaf
lipids from plants differing carbon dioxide metabol-

Collister, J. W., Summons, R. E., Lichtfouse, E. and
Hayes, J. M. (1992) An isotopic biogeochemical study
of the Green River Oil Shale. Organic Geochemistry 19,
265–276.

de Leeuw, J. W., van de Meer, F. W., Ripstra, W. I. C.
and Schenck, P. A. (1980) On the occurrence and struc-
tural identification of long chain unsaturated ketones
and hydrocarbons in sediments. In Advances in Organic
Geochemistry 1979, eds. A. G. Douglas and J. R.

Geology of Poland, ed. R. Olska, Vol. VI: Mineral
deposits. Wydawnictwa Geologiczne, Warsaw, pp. 75–
77.

Eglington, G. and Hamilton, R. J. (1963) The distribution
of n-alkanes. In Chemical Plant Taxonomy, ed. T.

Ellouz, N. and Roca, E. (1994) Kinematic reconstruction of
the Carpathian fold belt and adjacent areas since
Cretaceous: a quantitative approach. In Peri-Tethyan
Platforms. Proceedings of the IEP-Eurotethys

Freenman, K. H., Boreham, C. J., Summons, R. E. and
Hayes, J. M. (1994) Predictive isotope biochemistry:
Hydrocarbons from anoxic basins. Organic Geochemistry
21, 629–644.

Freenman, K. H., Hayes, J. M., Trendel, J. M. and
Albrecht, P. (1990) Evidence from carbon isotope
measurements for diverse origins of sedimentary lipids.
Nature 343, 254–256.

Goad, L. J. and Withers, N. (1962) Identification of 27-
nor-(24R)-24-methyl-cholasterol-5,22-dien-3β-ol and bras-
casterol as the major sterols of the marine dinoflagellate
Gymnodinium simplex. Lipids 17, 853–858.

Haczewski, G. (1989) Coccolith limestone horizons in the
Menilite-Krosno Series (Oligocene, Carpathians): identi-
fication, correlation and origin. Annales Societatis
Geologorum Polon 59, 435–523. (In Polish with
extended English summary).

ium from the Black Sea. Linnology and Oceanography 31, 150–155.

Summons, R. E., Jahnke, L. L. and Rokasandic, Z. (1994) Carbon isotopic fractionation in lipids from methano- trophic bacteria: Relevance for interpretation of the geo-

