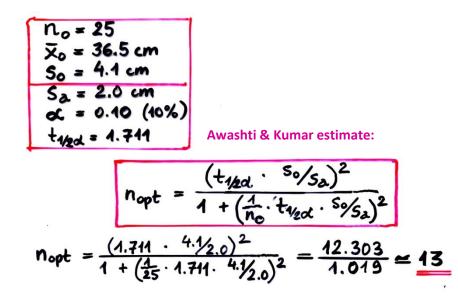

WB.ING-30


Numerical exercises Ćwiczenia rachunkowe

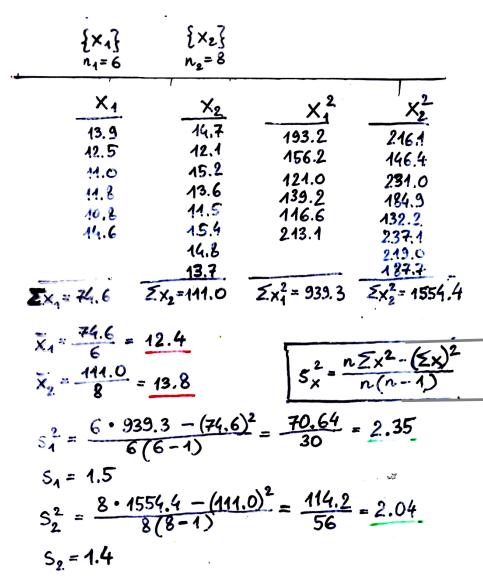
	$ \frac{INNER}{\{X_1\}} $ $ n_1=5 $	OUTER { X ₂ } n ₂ =5
	27.4	23.0
	30.3	30.3
	22.7	26.4
	19.8	36.8
	24.8	33.5
Mean:	25.0	30.0

Data as above	Estimate based on confidence interval:
L = 2.0 cm d = 0.10 (10%) $t_{1/2}d = 1.711$	$n_{opt} = \left(\frac{S_o \cdot t_{1/2}}{L_{ox}}\right)^2$
	(4.1 · 1.711) ² ~ 17

$$n_{opt} = \left(\frac{4.1 \cdot 1.711}{2.0}\right)^2 \simeq 13$$

For grouped data (n-data, k-	classes):
$\overline{\mathbf{X}} = \frac{1}{n} \sum_{i=1}^{k} f_i X_i$	idpoint value
class f	requency
$S_{x}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} f_{i} (x_{i} - \bar{x})^{2}$	$S_x = \sqrt{S_x^2}$

Example : Classes 0.0 - 1.0 cm 1.0 - 2.0 2.0 - 3.0 3.0 - 4.0 4.0 - 5.0 5.0 - 6.0 k=6	Midpaints Xi 0.5 cm 1.5 25 3.5 4.5 5.5	Number frequencies 4 14 38 42 23 6 n = 127	fi×i 2.0 21.0 95.0 147.0 103.5 33.0 401.5	1.00 31.50 237.50
x =		$= 3.16 \approx 3$ $= \frac{1}{16} = \frac{1}{16}$		2]
s ² _x =	$\frac{1}{126}$ (143	1.7 - 1269.: .14 ≃ 1.1 c	3) = 1.2	


 $\begin{cases} x_{1}^{2} & 16 & 22 & 21 & 20 & 23 & 21 & 19 & 15 & 13 & 23 & 17 \\ n=17 & & & 20 & 29 & 18 & 22 & 16 & 25 \\ \hline x &= 20 & & & \\ S_{x}^{2} &= 14.9 & & & \\ S_{x}^{2} &= \sqrt{\frac{5^{2}}{n}} &= 0.93 \\ S_{x}^{2} &= \sqrt{\frac{5^{2}}{n}} &= 0.93 \\ For dc=0.05 & t_{1/2}d = 0.025 &= 2.120 \\ DF = 16 & & \\ L &= 2.120 & \cdot 0.93 &= 1.97 \approx 2 \\ 18 < M < 22 & \text{with } 95\% \text{ confidence} \end{cases}$

And if we wish to be 99% confident?

For
$$d = 0.01$$
, $t_{1/2}d = 0.005 = 2.921$
 $L = 2.921 \cdot 0.93 = 2.716 \approx 3$
 $17 < /4 < 23$ with confidence of 99%

{×} $S_x^2 = 0.083$ $S_x = 0.288$ $\sum_{x}^{n} (x - \bar{x})^2 = (n - 1) S_x^2 = 2.158$ For x = 0.10 $\chi^2_{\frac{1}{12}x = 0.05} = 38.90$ $\chi^2_{0.95} = 15.38$ $\frac{2.158}{38.90} < 3^2 < \frac{2.158}{15.38}$ 0.055 < 32 < 0.140 with 90% confid. 0.234 < 6 < 0.374 with 90% confid.

Sandstone porosity (%)

23

S_× =

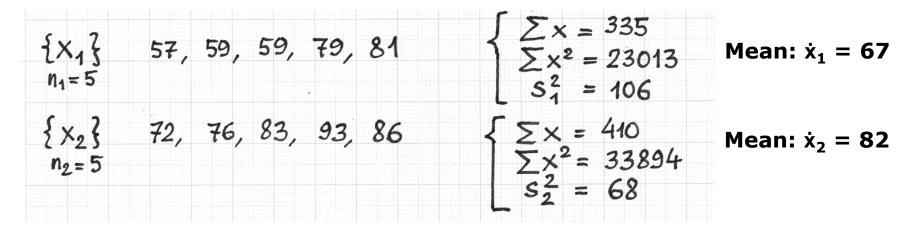
M= 180	assumed	_		H ₀ : H ₁ :
{× } n =16	×	×2		
n ≈16	152 184	23104	5-	
	104	33856	X=	
	199		\$ <mark></mark> 2=	s S _x
	178	•		• • • • • • • • • • • • • • • • • • • •
	180	•	S _x =	
	186	•	•**	
	183	•		1x-11*1_
	194	•	t =	S _x =
	185	e -		S×
	179	•	DF=	:15
	184	a	t 0.0	
	186			LUSION:
	215			
	246	- an all		
	198	392.04		
Σ×	= 3026	Σx ² = 578358		

 $\sum x = 335$ $\sum x^2 = 23013$ $S_1^2 = 106$ {x1} 57, 59, 59, 79, 81 $n_1 = 5$ $\Sigma \times = 410$ $\Sigma \times^2 = 33894$ $s_2^2 = 68$ $\{x_2\}$ 72, 76, 83, 93, 86 $n_2 = 5$

One-tail hypothesis to be tested: $\begin{cases} H_0: \\ H_1: \end{cases}$

The test F-function: $F = s_1^2/s_2^2$

The calculated F-value F =


The critical F-value:

for
$$DF_1 = DF_2 =$$

and $\alpha = 0.10$
 $F_{0.10} =$

Result:

Conclusion:

Exercise 11 (cont.)

One-tail hypothesis to be tested:

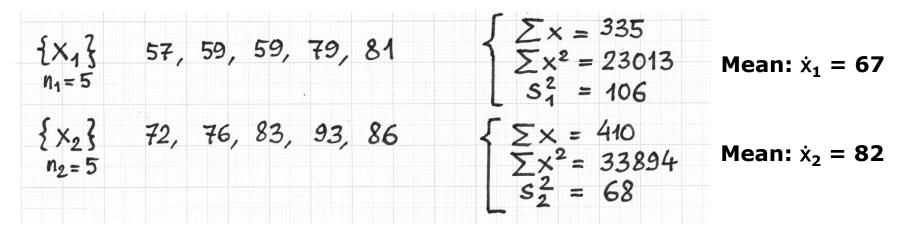
 $\begin{cases} \mathsf{H}_{\mathsf{o}}:\\ \mathsf{H}_{\mathsf{1}}: \end{cases}$

The test t-function:

t = ... (see p. 27)

The calculated t-value:

t =


The critical t-value:

for DF = $\alpha = 0.10$ t_{0.10} =

Result:

Conclusion:

Exercise 11 (cont.)

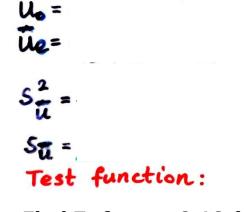
The Cramer-von Mises normality test: an example

ĩ	×i	Xi-x	$Z_{i} = \frac{X_{i} - \bar{X}}{s_{X}}$	p:=p(zi)	<u>2i-1</u> 2n	$P_i - \frac{2i}{2}$	<u>-1</u> n	,(Pi-	$\frac{2i-1}{2n}$
2 3 4 5 6 7 8 9	16.01 16.32 17.30 17.33 17.60 19.80 24.31 24.70 26.50 28.70								
						S	um:		

Critical value:

4

.


The Pearson chi-square test: an example

Classes 32.5 - 37.5 37.5 - 42.5 42.5 - 47.5 47.5 - 52.5 52.5 - 57.5 57.5 - 62.5 62.5 - 67.5 67.5 - 72.5 72.5 - 77.5 k=9 n	ni 33 93 177 266 326 290 194 91 30 = 1500	×i 37.5 42.5 52.5 57.5 62.5 67.5 72.5 77.5	Zi= <u>Xi-x</u> Sx	Pi	Pi	$\frac{n\rho_i (n_i - n\rho_i)^2}{n\rho_i}$
			$\chi^{2}_{0.05} =$			15 -

The runs test for the difference between two populations – an example

 $\frac{\text{Example:}}{\{X_1\}} \quad \text{Turbiduite sandotone thicknesses (cm) in two outcrops.} \\ \begin{cases} X_1 \\ n_1 = 10 \\ \{X_2\} \\ n_2 = 9 \end{cases} \quad 27, \ 26, \ 34, \ 39, \ 25, \ 26, \ 27, \ 38, \ 43 \end{cases}$

Turbidute thucknesses (cm)

Find Z_{α} for $\alpha = 0.10$ (from Table 1B) $Z_{0.10} =$ Conclusion:

The Mann-Whitney (rank sum U) test for the difference between two populations – an example

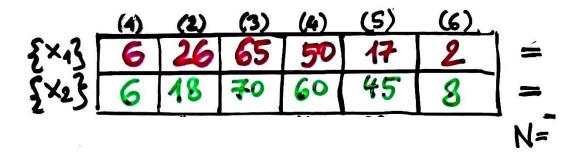
 $\{X_1\} \ n_1 = 8 \\ \{X_2\} \ n_2 = 10$ 62, 63, 59, 54, 65, 60, 62, 57 53, 58, 61, 62, 67, 52, 56, 58, 61, 63

The Kolmogorov-Smirnov test: an example

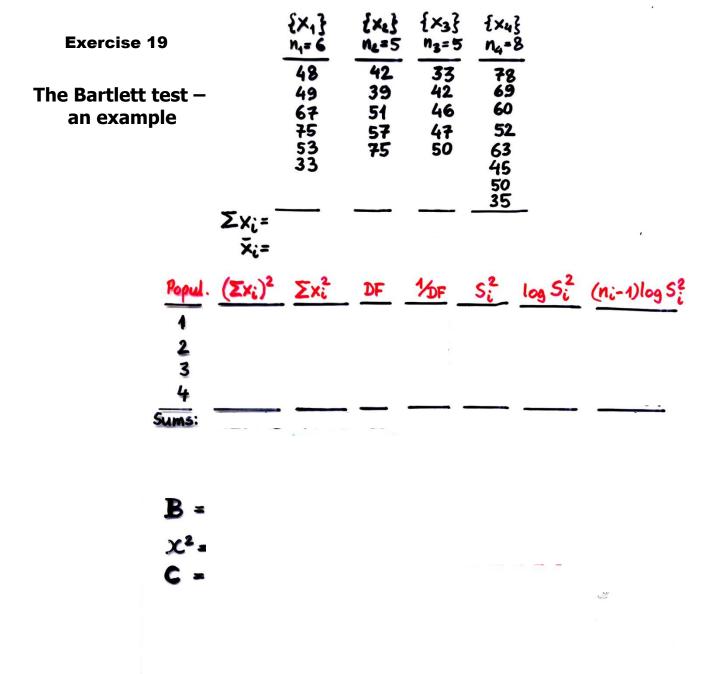
Classes	EX13 Number frequency	Cumulative frequency	Cumul. freq.%	{X2} Number frequency	Cumulat. frequency	Cumul. freq. %	D	
0 -5 5 - 10 10 - 15 15 - 20 20 - 25 25 - 30 30 - 35 35 - 40 40 - 45 45 - 50	14 5 1 40 65 229 875 802 4324 2167 5492			3 4 1 9 22 41 313 679 871 3980 =5820				

The chi-square test with contingency table – an example

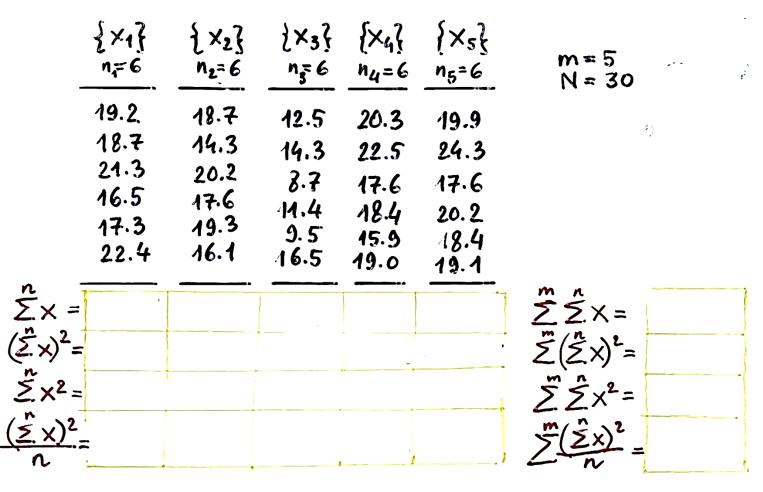
	Species A	Species B	Species C
Bed 1	2	5	4
Bed 2	3	8	7

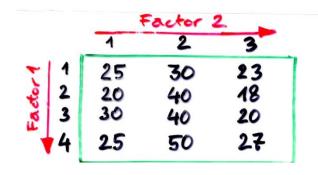

N =

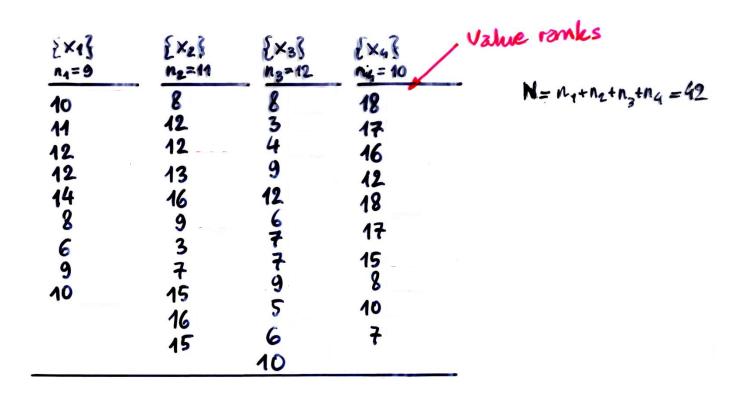
1


.

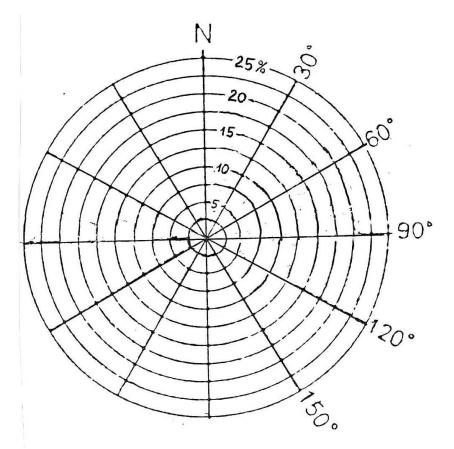
.


The chi-square test with contingency table – an example

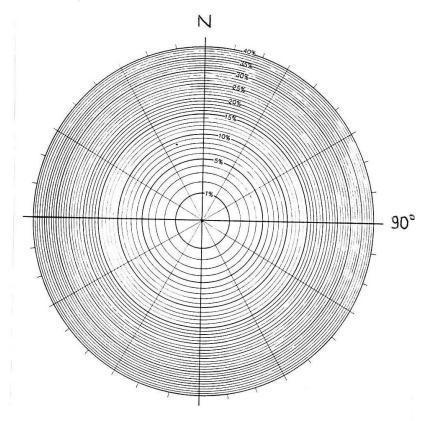

.


Conclusion:

Exercise 21



2 F



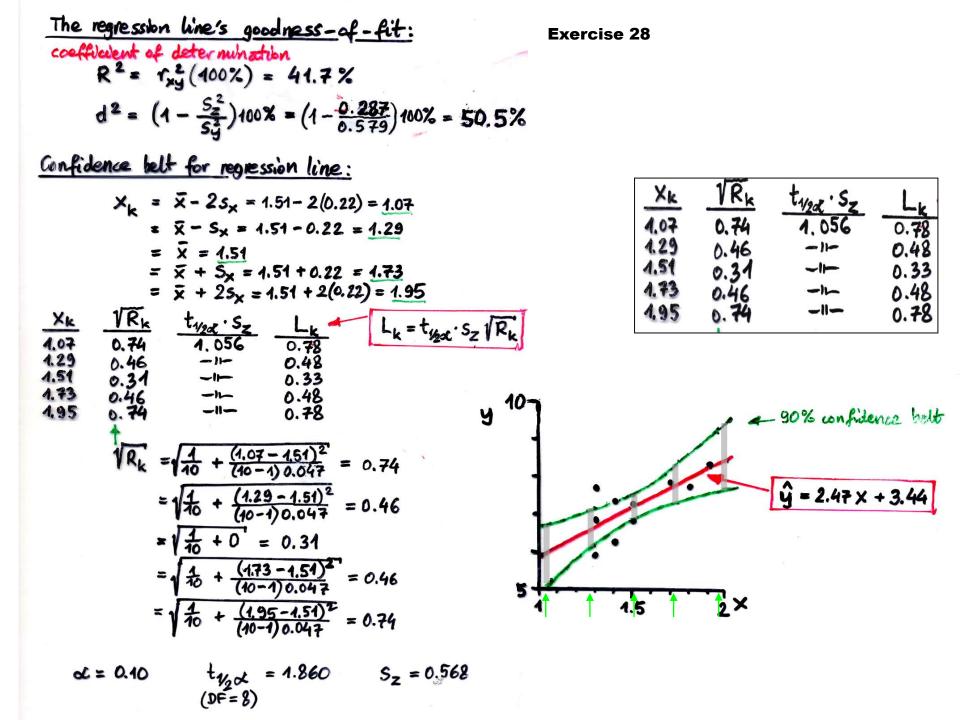
Conclusion:

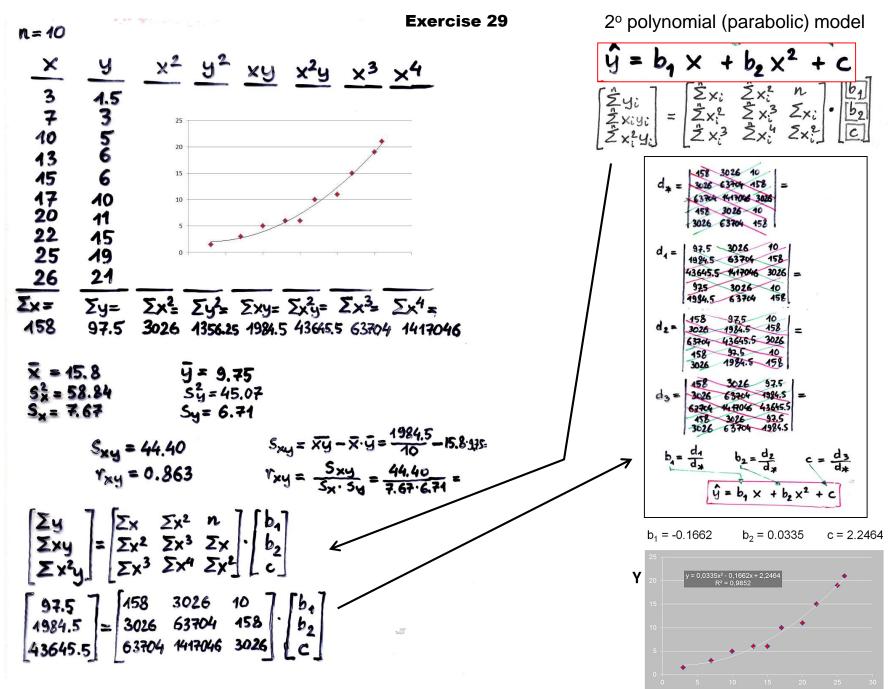
EXAMPLE Measurements of the azimuth of ripple cross-laminae dip direction in a bay-fill sedimentary succession (Early Cretaceous Helvetiafjellet Fm., Spitsbergen). The data (n=44 measurements) have been grouped in 30°-classes.

Azimuth class (degrees)	Frequency %	
0-30	9.5	
30 - 60	8.0	
60 - 90	6.0	
90-120	4.0	
120-150	6.0	
150 - 180	4.0	
180-210	6.0	
210-240	8.0	
240-270	5.5	
270-300	11.0	
300 - 330	18.0	0 . 1.1.
330-360	14.0	n = 44

Example:	class	observed freq. (Di)
	0-60°	8
	60-120° 120-180°	9
N = 66 k = 6	180-240° 240-300°	20
	300-360	+ +
	1	

Grouped data

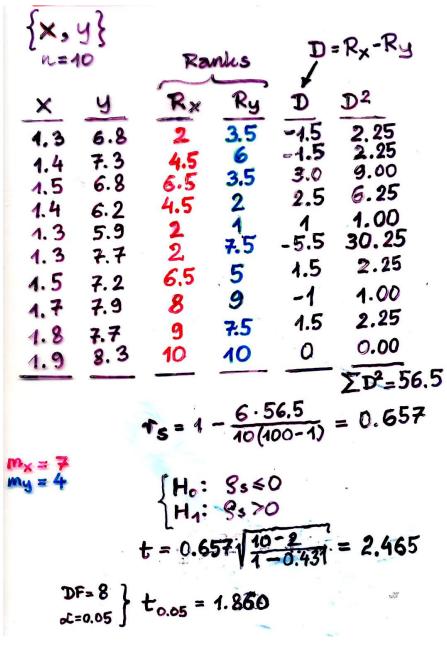

And a second sec	1 m m m m m m m m m m m m m m m m m m m			
classes	Xi	fi%	fi cos Xi°	fi sinx;°
0-30°	15	9.5	9.18	2.46
30-60°	45	8.0	5.66	5.66
60-90°	75	6.0	1.55	5.80
90-120°	105	4.0	-1.04	3.86
120-150°	135	6.0	-4.24	4.24
150-180°	165	4.0	- 3.86	1.04
180-210°	195	6.0	-5.79	- 1.55
210-240°	225	8.0	- 5.66	-5.66
240-270°	255	5.5	-1.42	-5.31
270-300°	285	11.0	2.85	-10.63
300-3.30°	315	18.0	12.73	-12.73
330-360°	345	14.0	13.52	- 3.62
Sums:		100.0	23.48	-16.45
n=44			E =0.2348	3 = -0.1645


 $\begin{bmatrix} \mathbf{\Sigma} \mathbf{y} \\ \mathbf{\Sigma} \mathbf{x} \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{\Sigma} \mathbf{x} & n \\ \mathbf{\Sigma} \mathbf{x}^2 & \mathbf{\Sigma} \mathbf{x} \end{bmatrix} \begin{bmatrix} \mathbf{b} \\ \mathbf{c} \end{bmatrix}$ **Exercise 26 Calculation of** the regression line $\begin{bmatrix} 71.8 \\ 109.48 \end{bmatrix} = \begin{bmatrix} 15.1 & 10 \\ 23.23 & 15.1 \end{bmatrix} \begin{bmatrix} b \\ c \end{bmatrix}$ $d_{\star} = \begin{vmatrix} 15.4 & 40 \\ 23.25 & 45.4 \end{vmatrix} = 15.1 \cdot 15.1 - 10 \cdot 23.23 = -4.29$ $d_1 = \begin{vmatrix} 71.8 & 10 \\ 109.48 & 454 \end{vmatrix} = 71.8 \cdot 15.1 - 10 \cdot 109.48 = -10.62$ $d_2 = \begin{vmatrix} 15.1 & 71.8 \\ 23.23 & 109.48 \end{vmatrix} = 15.1 \cdot 109.48 - 71.8 \cdot 23.23 = -14.76$ $b = \frac{d_1}{d_1} = \frac{-10.62}{-4.29} = 2.47$ $C = \frac{d_2}{d_1} = \frac{-14.76}{-14.76} = 3.44$ $\hat{y} = 2.47 \times + 3.44$ lHo: β≤0 |H₁: β>0 one-tail test Fisher t-test $t = \frac{|b|\sqrt{\sum x^2 - n(\bar{x})^2}}{\sqrt{S_y^2(1 - r_{xy}^2)}} = \frac{2.47}{\sqrt{0.579(1 - 0.417)^2}} =$ $=\frac{1.618}{0.594}=2.785$ 5 to.05 = 1.860 (DF = 8)

Calculation of residuals

-

{x,y}n=	10					
<u>× y</u>		<u>y</u> ²	xy	(xy) ²	ŷ	Z ² = (y-ý) ²
1 1.3 6.	3 1.96	46.24 53.29	8.84	78.14	6.651 6.898	0.0222
3 1.5 6.	8 2.25	38.44	10.20 8.68	104.04 75.34	6. 898	0.1190
5 1.3 5. 6 1.3 7.	7 4.69		7.67 10.01	58.82 100.20	6.651 6.651	0.5640
7 15 7 8 17 7 9 18 7	9 2.89	62.41	10.80	146.64 180.36	7.145 7.639	0.0030 0.0681
9 1.8 7. 10 1.9 8.		59.29 68.89	13.86 15.77	192.10 248.69	7.886 8.133	0.0346 0.0279
Σ×= Σy 15.1 71	$= \Sigma \chi^2_{=}$ 8 23.23	∑y ² 520.74	5 xy= 109.48	2(xy) = 1258.80		$\sum z^2 = 2.5880$


Х

n=7	Exercise 30	
× y 1 2 3 5 7 40 6 44	<u>x^e y^e xy lny x.lny</u>	Exponential mode This has and the solving th
6 44 7 26		or in m
X= 28 Zy=	$\begin{array}{c} 67 & \Sigma_{xy=367} \sum \ln y= \\ \Sigma_{x^{2}=1059} & 13.55 & 65.69 \end{array}$	
X = 4 S ² = 4.66 S _X = 2.46	y = 9.57 Sy = 69.62 Sy = 8.34	
100	= 16.5 = 0.9 <u>2</u>	
	$\begin{bmatrix} \Sigma \ln y \\ \Sigma \times \ln y \end{bmatrix} = \begin{bmatrix} \Sigma \times n \\ \Sigma \times^2 & \Sigma \times \end{bmatrix} \begin{bmatrix} \ln b \\ \ln c \end{bmatrix} < 0.29$	
	$\hat{y} = c \cdot b^{\times}$ $\hat{y} = 4.34 \cdot 1.51^{\times}$	

Exponential model: $\begin{array}{c}
 \underbrace{\hat{y} = b^{X} \cdot c} \\
 This has to be transformed into a linear form:$ $ln y = x \cdot ln b + ln c$ and the coefficients (b and c) are found bysolving the following system of linear equations: $<math display="block">
 \underbrace{\hat{z} \ ln y;}_{\hat{z} \ x; \cdot ln y;} = \overline{[ln b]} \cdot \overline{\hat{z}} \, x; + \overline{[ln c]} \cdot n. \\
 \underbrace{\hat{z} \ x; \cdot ln y;}_{\hat{z} \ x; \cdot ln y;} = \overline{[ln b]} \cdot \overline{\hat{z}} \, x;^{2} + \overline{[ln c]} \cdot \overline{\hat{z}} \, x; \\
 or in mutrix form:$ $<math display="block">
 \underbrace{\left[\begin{array}{c} \hat{z} \ n, \\ \hat{z} \ x; \cdot ln y; \\ \end{array}\right] = \left[\begin{array}{c} \hat{z} \, x; & n \\ \hat{z} \, x; \cdot n \\ 1 \ n c \\ 1 \ n c$

Exercise 31					
n=5	 42-				
<u>×</u> 0.5	<u>y</u> 2	<u>x²</u> y²			
1	6		Logar	ithmic model: g=	
2	10			to be solved to fin	
4	15			{Žy; =	し
8	17			[≥ x;y; =	$[D] \geq x_i \ln x_i + [C] \geq x_i$
Zx= 15.5	Σy= 50	$\Sigma x^2 = \Sigma y^2 = 82.25 654$	Σxy= Σln 223	X= Zxlnx=	
X= 3		ÿ=10		× ,	
$S_{\mathbf{x}}^{2} = 9$		$s_{y}^{2} = 38.5$			
Sx = 3.	.05	Sy = 6.20			
	*xy =	= 0. 89 9			
$\begin{bmatrix} \Sigma y \\ \Sigma x y \end{bmatrix} = \begin{bmatrix} \Sigma \ln x & n \\ \Sigma x \ln x & \Sigma x \end{bmatrix} \begin{bmatrix} b \\ c \end{bmatrix}$					
$\hat{y} = b \cdot \ln x + c$					
$\hat{y} = 5.43 \ln x + 6.25$					

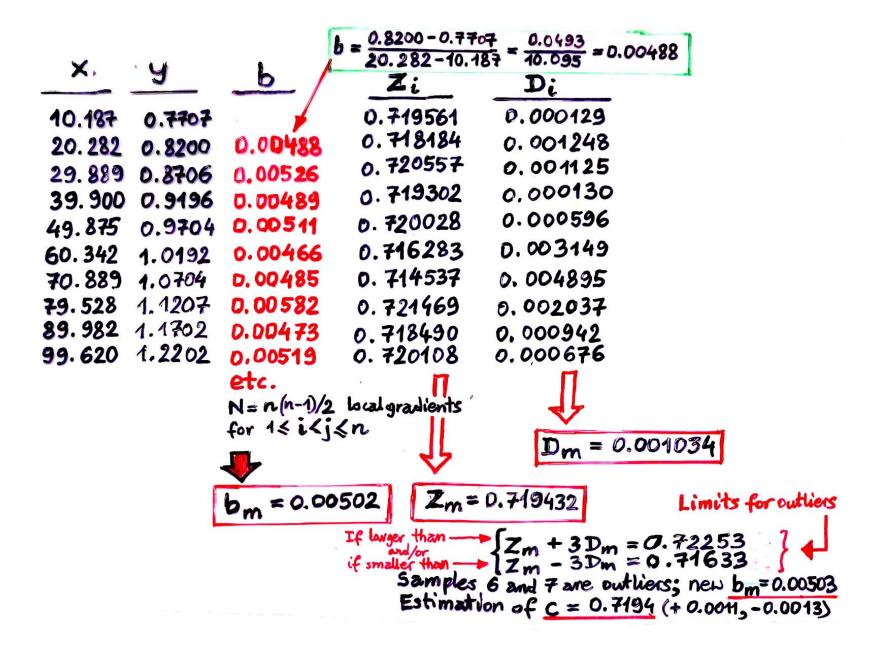
					EACIC		-
n=8							
<u>×</u>	у	×2	y2	xy	lnx	lny	xlnx xlny
4	10						
4.5	25				Hv	nerho	lic (power-law) model
2	30				iiy		
1.5 2 3 4	35						$\hat{j} = c \cdot x^b$
4	40						
10	50						
16	60						
23	70						
Ex=	Σy=	Ex2=	Σy_{\pm}^2	Σxu=	Zinx=	Elnu=	18.38 Z xlny=
60.5	320	917.25	15450	3442.5	11.8	Σ	xlnx= 212.17 150.53
S ² _× =	65.67	ت] = - جي = جي =	378.5	7			•
	S.	1= 146	,07				
		= 0.9					
	• * *	-		r	02201	7 [7
$\begin{bmatrix} \Sigma \ln y \\ \Sigma \times \ln y \end{bmatrix} = \begin{bmatrix} \Sigma \ln x & n \\ \Sigma \times \ln x & \Sigma x \end{bmatrix} \cdot \begin{bmatrix} b \\ \ln c \end{bmatrix}$							
$\begin{bmatrix} 28.38\\212.17 \end{bmatrix} = \begin{bmatrix} 11.8 & 8\\150.53 & 60.5 \end{bmatrix} \begin{bmatrix} b\\ lnc \end{bmatrix}$							
ŷ	= C · >	<i>к</i> Ь	ŷ =	17 ×	0.489		

Correction for rank ties:

$$f_{s} = \frac{E_{x} + E_{y} - \sum_{z}^{n} d^{2}}{2\sqrt{E_{x} \cdot E_{y}}}$$

$$E_{x} = \frac{10^{3} - 10}{42} - \frac{7^{3} - 7}{12} = 82.5 - 28 = 54.5$$

$$E_{y} = \frac{40^{3} - 10}{42} - \frac{4^{3} - 4}{42} = 82.5 - 5 = 77.5$$

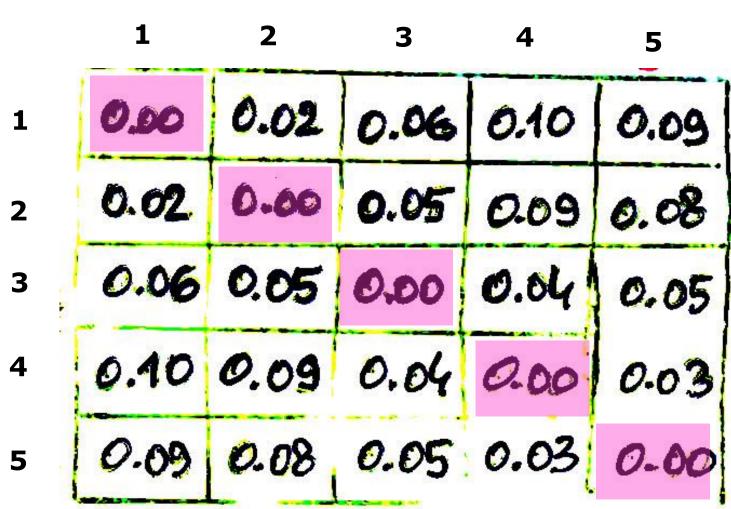

$$f_{s} = \frac{54.5 + 77.5 - 56.5}{2\sqrt{54.5} \cdot 77.5} = \frac{75.5}{129.9} = 0.581$$

$$\begin{cases}H_{0}: S_{s} < 0\\H_{4}: S_{s} > 0\end{cases}$$

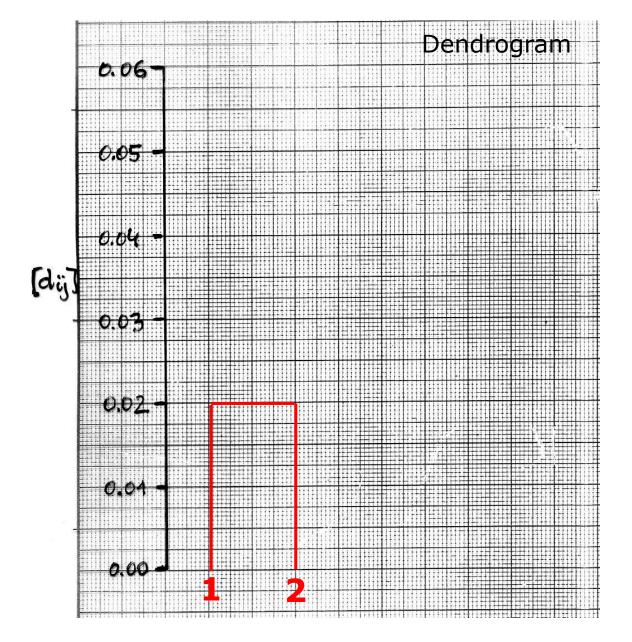
$$t = 0.581 \sqrt{\frac{10 - 2}{1 - (0.581)^{2}}} = 2.019$$

$$t_{0.05} = 4.860$$

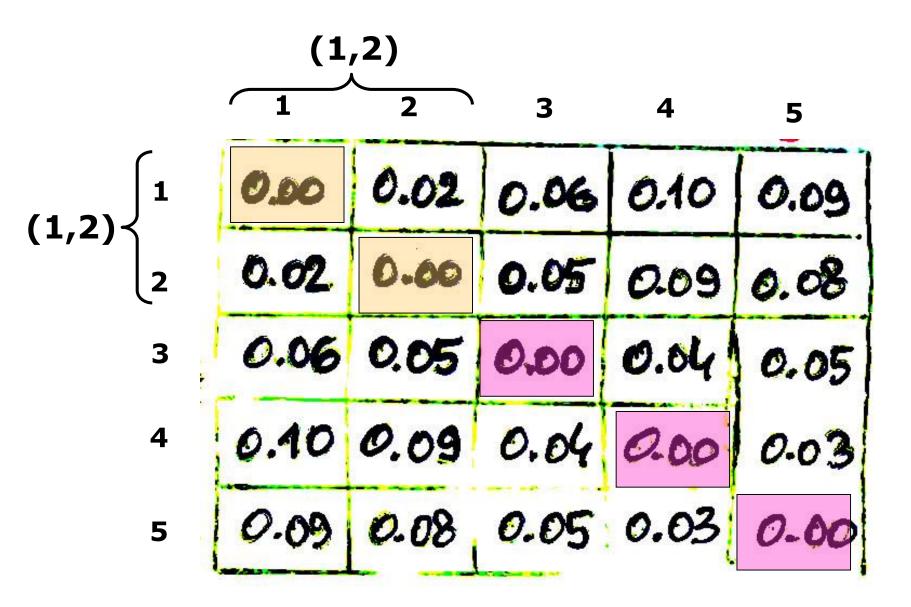
Exercise 34

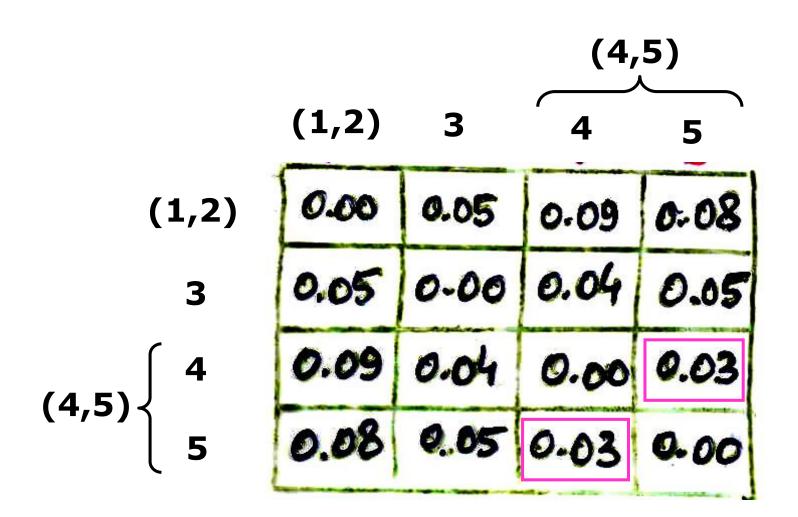

Degree of bed bioturbation

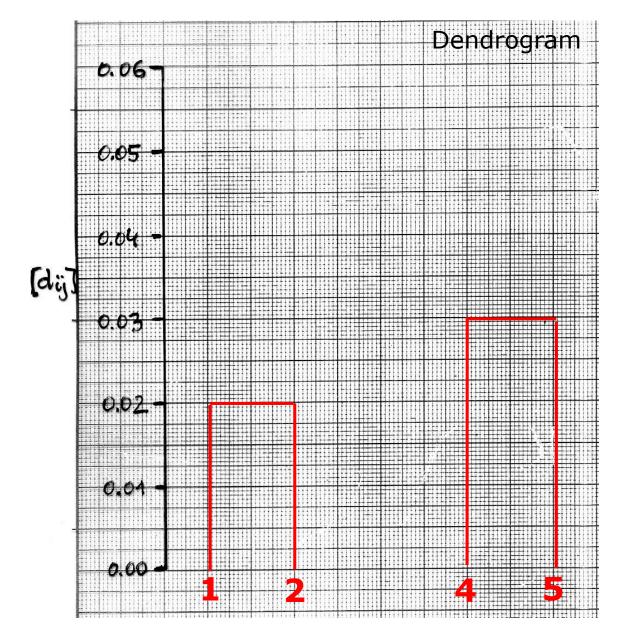
		Bivalves & molluscs	Polygenic assemblage of brachiopods, bivalves & molluscs	Monogenic assemblage brachiopods	F
		Α	В	С	
	(O _{ij}	39	18	10	67
Grey clavey	1 \langle e _{ij}				
	L d _{ij}				
	O _{ij}	65	37	44	146
Lmst &	2 { e _{ij}				
annydr.	d _{ij}				
	(O _{ij}	43	40	13	96
White Imst	3 { e _{ij}				
	$\int d_{ij}$				
		147	95	67	309

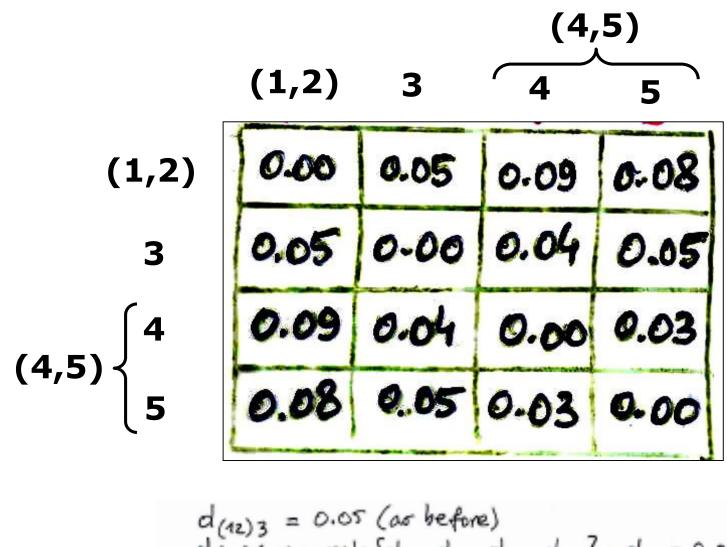

Exercise 36 *Make your calculation notes here*

		OA	OWB	OWP	OWPk	Affinity ma	trix			
	Samples	forams	forams	forams	forams		OA	OWB	OWP	OWPk
1	So1	50	141	3	1	OA	(
2	So2	280	18	1	0	OWB			0	
3	So3	10	14	139	0	OWP				0
4	So4	90	24	7	0	OWPk				0
5	So5	53	19	18	0			itagorean t	avonomic dis	tance <mark>d_{ii} used</mark>
6	So6	250	34	13	2					italice u _{ij} useu
7	So8	296	4	0	0					
8	So9	90	0	0						
9	So10	72	0	0	0					
10	So11	240	0	0	0					
11	So12	297	0	0	0					
12	So14	294	6	0	0	Taxonomic dis	stance d	for varia	bles OA	and OWB
13	So15	14	6	1	0		juanee a ij			
14	So17	57	5	0	0					
15	So18	292	7	1		d _{ij} = [(50-141) ²	+ (280-1	8) ² + (10	-14) ² + (9	0-24) ² + (2-27) ²] ^{1/2}
16	So19	7	1	0	0					
17	So23	65	7	3	0		d _{ij} =	749.50		
18	So24	5	110	23	0					
19	So25	14	26	7	0					
20	So26	39	0	0	0					
21	So27	33	0	0	0					
22	So28	27	2	0	0					
23	So29	60	3	0	0					
24	Rz1	25	0	0	0					
25	Rz2	0	0	0	0					
26	Rz4	0	84	0	1					
27	Rz6	0	0	0	0					
	Rz7	0	0	0	0					
29	Rz8	0	0	0	0					
30	Rz9	0	0	0	0					
31	Rz10	0	0	0	0					
32	S-04	2		15	0					

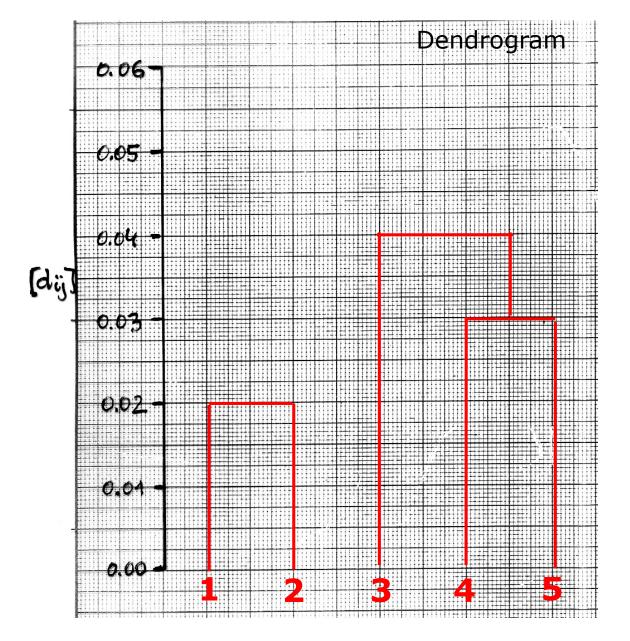


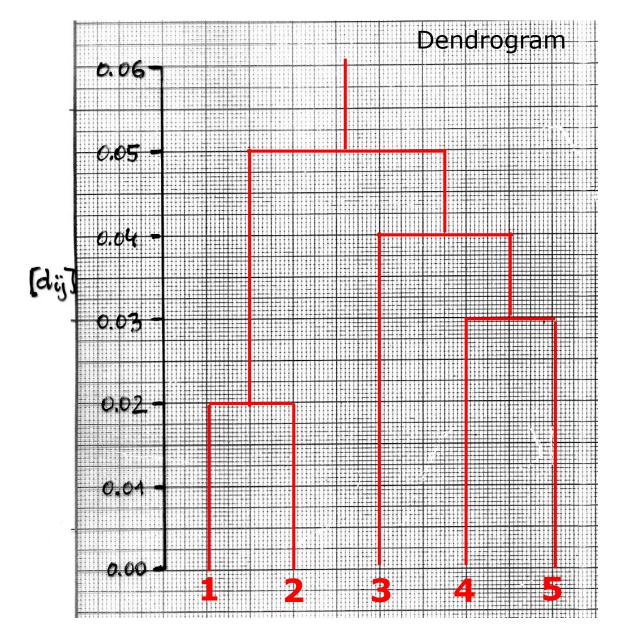

The nearest-neighbour (single-link) clustering method




Exercise 38

Exercise 38




 $d_{(12)3} = 0.05$ (as before) $d_{(12)(45)} = muh \{d_{14}, d_{15}, d_{24}, d_{25}\} = d_{25} = 0.08$ $d_{(45)3} = muh \{d_{24}, d_{35}\} = d_{34} = 0.04$

$$(1,2) \begin{array}{c} (3,4,5) \\ (1,2) \end{array} \begin{array}{c} 3 \\ (4,5) \end{array} \end{array}$$

$$(1,2) \begin{array}{c} 0.00 \\ 0.05 \\ 0.00 \\ 0.06 \end{array} \begin{array}{c} 0.08 \\ 0.04 \\ 0.00 \end{array}$$

(3,4,5)(1,2)3 (4,5)0.00 0.05 0.08 (1,2) 0.00 0.04 3 0.05 (3,4,5) 0.00 0.08 (4,5) 0.04 0.00 0.05

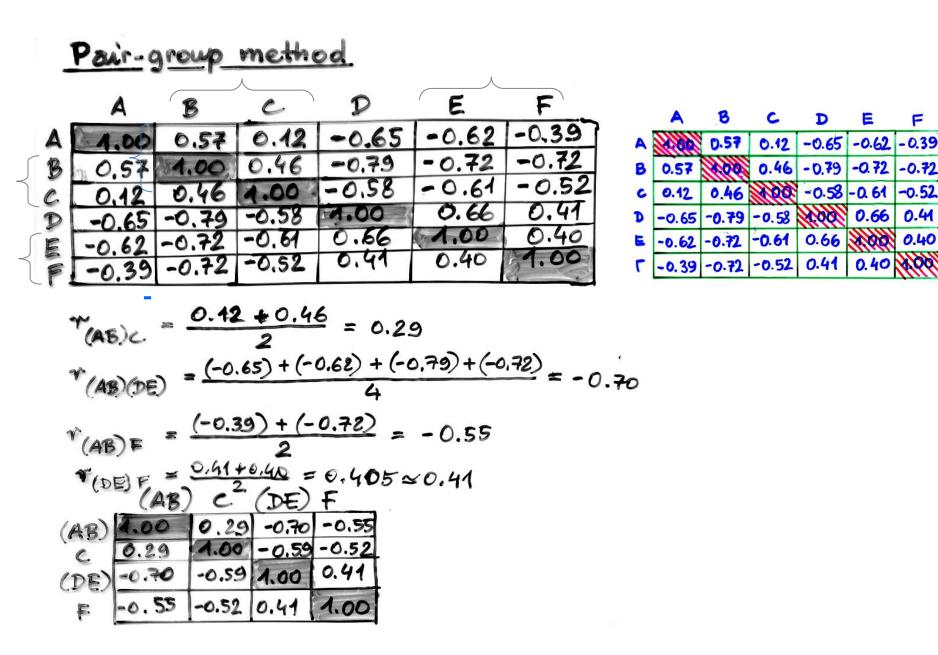
Exercise 3	39
------------	----

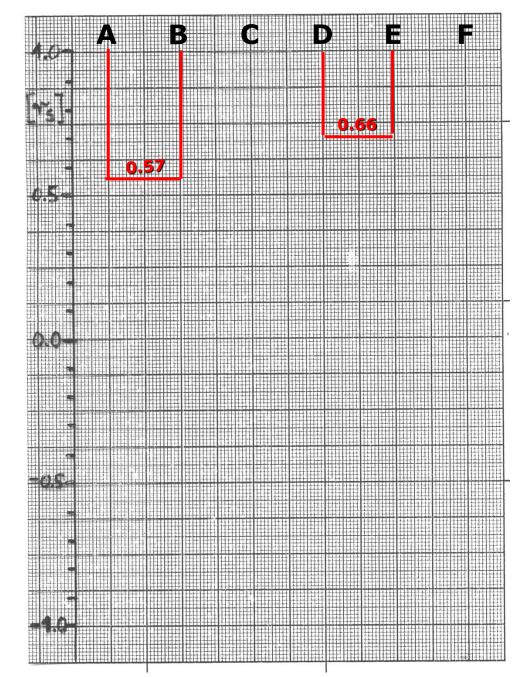
D

E

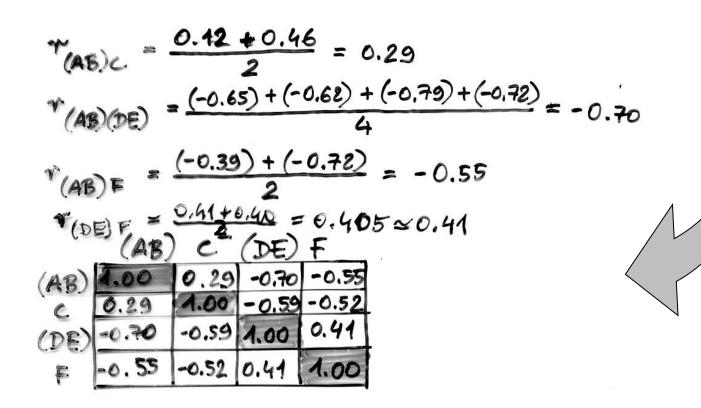
0.66

0.40

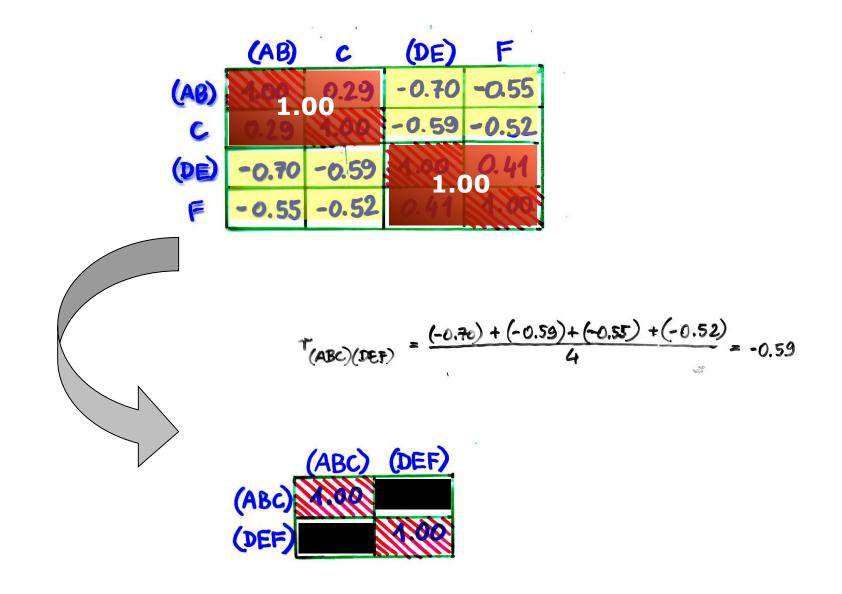

0.40 100

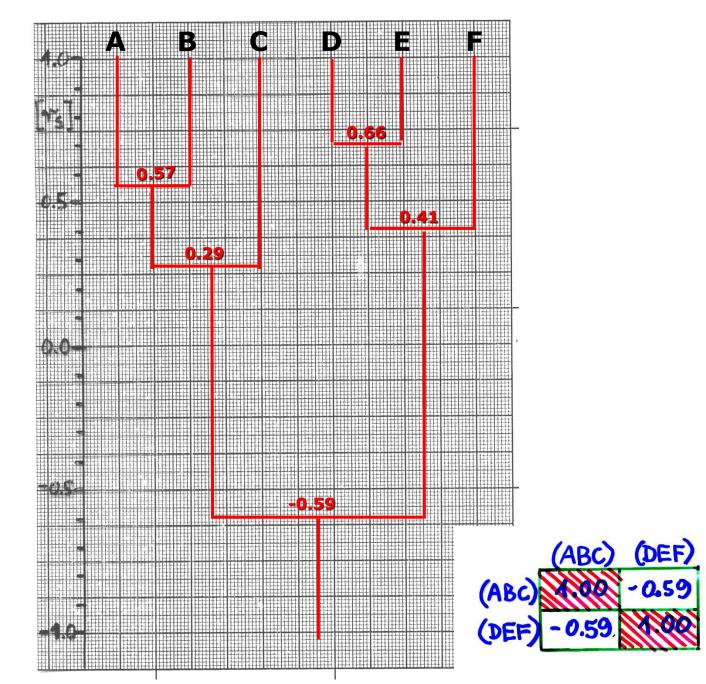

F

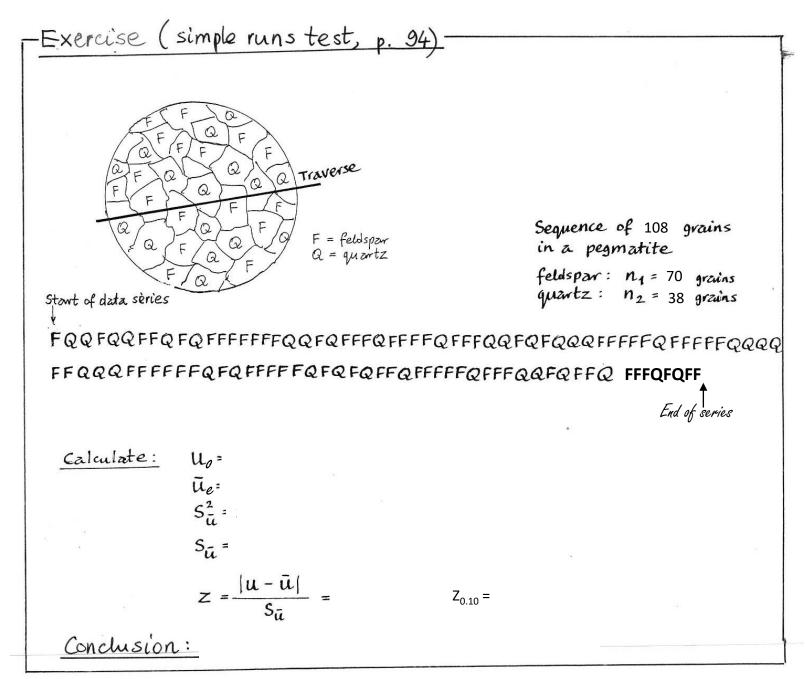
-0.52

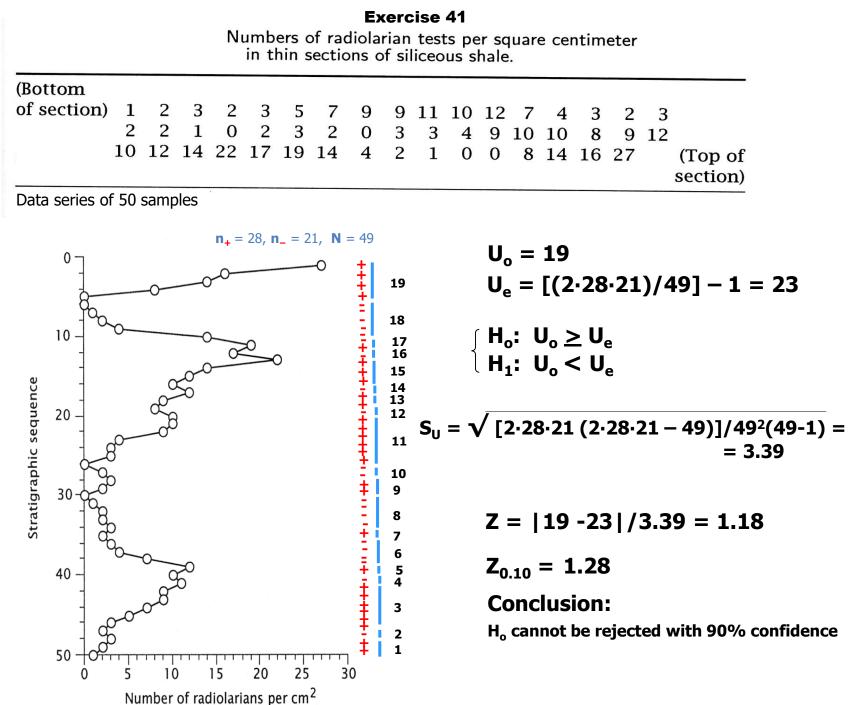

0.41


-0.62 -0.39





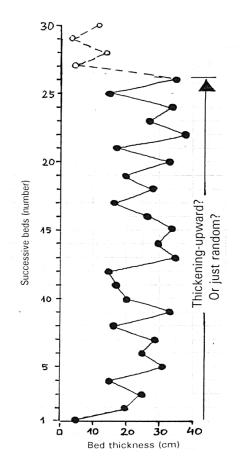

	A	B	C	\mathcal{D}	E	F
A	4.00	0.57	0.12	-0.65	-0.62	-0.397
B	0.57	4.00	0.46	-0.79	-0.72	-0.72
el		0.46	and the second s	-0.58	-0.61	-0.52
D	-0.65	-0.79	-0.58	1.00	0.66	
E	-0.62	-0.72	-0.61	0.66	1.00	0.40
F	-0.39	-0.72	-0.52	0.91	0.40	21.00



tumber of fudiolarians per em

Testing of stratigraphic trends

Exercise 42

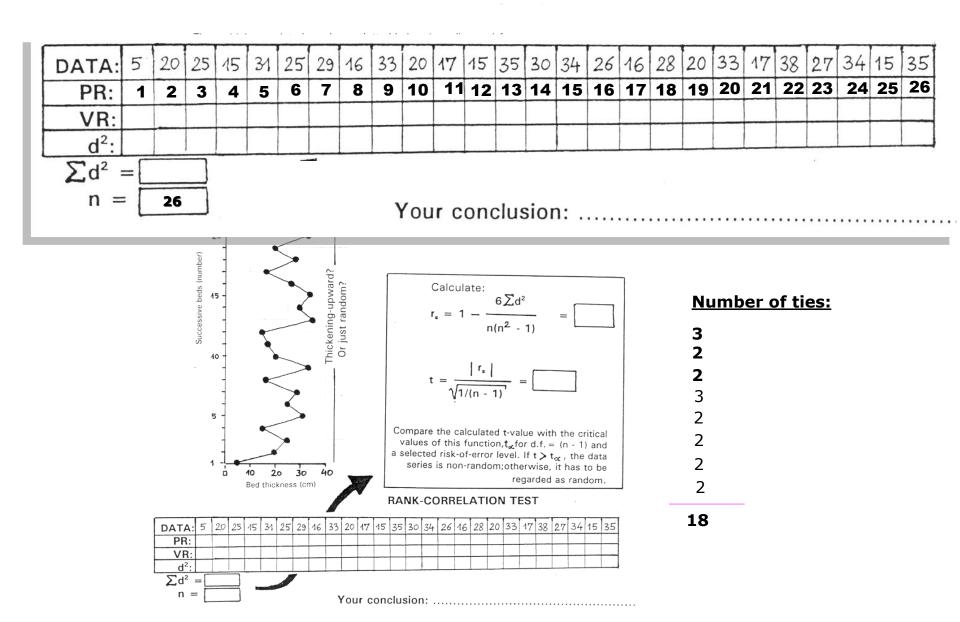

,

A turbidite succession has the following bed thicknesses (in cm):

(base) 5 20 25 15 31 25 29 16 33 20 17 15 35 30 34 26 16 28 20 33 17 38 27 34 15 35 (top)

These thickness data have been plotted below (see diagram) for an easy overview.

Does this succession show a "thickening-upward" trend, or is it just random?



Testing of stratigraphic trends

Exercise 42

A turbidite succession has the following bed thicknesses (in cm):

(base) 5 20 25 15 31 25 29 16 33 20 17 15 35 30 34 26 16 28 20 33 17 38 27 34 15 35 (top)

Calculation

If there are ties in *VR*-indices within the data series, such that one or more mean *VR*s have to be used, the formula for the Spearman correlation coefficient needs to be corrected as follows (Kendall and Gibbons, 1990):

$$r_{\rm S} = \frac{E_{PR} + E_{VR} - \Sigma d^2}{2\sqrt{E_{PR} + E_{VR}}}$$

with: $E_{PR} = (n^3 - n)/12$ and $E_{VR} = [(n^3 - n)/12] - [(w^3 - w)/12]$, where *n* is the total number of data in the series and *w* is the number of data tied by *VR*-indices.

In the present case:

w = 18

 $E_{PR} = (26^3 - 26)/12 = 1462.5 \quad \text{and} \quad E_{VR} = [(26^3 - 26)/12] - [(18^3 - 18)/12] = 978.0$ and

 $r_s = (1462.5 + 978.0 - 1902)/2.1194.12 = 0.2255$

 $t = 0.2255/\sqrt{1/(26-1)} = 0.2255/0.2 = 1.127$

DF = 26 - 1 = 25

The statistical null and alternative hypotheses tested are:

$$\begin{cases} H_0: r_s \le 0\\ H_1: r_s > 0 \end{cases}$$

NB! This is a one-tail formulation. The risk of error will then be α and the critical value will be read off for α .

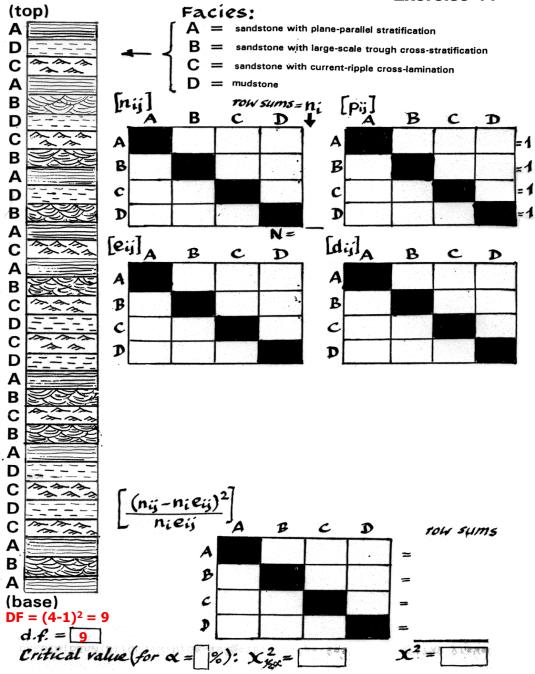
Another example

$$\begin{cases} x \\ 3 \\ 55.30 \\ 52.13 \\ 10 \\ 45.49 \\ 9 \\ 4 \\ 25 \\ 48.27 \\ 8 \\ 9 \\ 4 \\ 25 \\ 48.27 \\ 8 \\ 9 \\ 4 \\ 25 \\ 48.27 \\ 8 \\ 9 \\ 4 \\ 44.13 \\ 7 \\ 1 \\ 36 \\ 44.61 \\ 6 \\ 2 \\ 46 \\ 44.85 \\ 5 \\ 3 \\ 4 \\ 46.90 \\ 4 \\ 7 \\ 9 \\ 45.65 \\ 3 \\ 5 \\ 4 \\ 48.15 \\ 2 \\ 8 \\ 36 \\ 16 \\ 44.85 \\ 5 \\ 3 \\ 4 \\ 46.37 \\ 1 \\ 6 \\ 25 \\ \Sigma D^2 = 456 \end{cases}$$

$$r_{5} = 4 - \frac{6 \cdot 456}{4(4t^2 - 1)} = 0.291$$

$$\begin{cases} H_0: \ g_5 \leq 0 \\ H_4: \ g_5 > 0 \\ Test \ function \ (p \ 69): \\ t = 0.291 \sqrt{\frac{44 - 2}{4 - 0.29t^2}} = 0.942 \end{cases}$$

$$DF = 9$$


$$u = 0.45 \\ t_{0.45} = \frac{1}{40.45} = \frac{1}{40.45}$$

Conclusion:

$\frac{D^{2}}{0} \frac{VR}{4} \frac{PR}{4}$ $\frac{1}{4} \frac{4}{4} \frac{2}{2}$ $\frac{1}{0} \frac{3}{3} \frac{3}{3}$ $\frac{1}{5} \frac{5}{4} \frac{4}{9}$ $\frac{2}{5} \frac{5}{0} \frac{6}{6} \frac{6}{6}$ $\frac{0}{7} \frac{7}{7} \frac{7}{7}$ $\frac{0}{8} \frac{8}{8} \frac{8}{1} \frac{1}{10} \frac{9}{9} \frac{10}{10}$ $\frac{1}{2} \frac{10}{2} \frac{1}{16}$	n=11 { 0.21 1.21 0.21 1.22 1.25 1.25 1.58 5.35 5.25 9.61	PR 11 109 87 654321	VR 14352678191	$\frac{D^2}{100} \\ 36 \\ 36 \\ 9 \\ 25 \\ 0 \\ 4 \\ 16 \\ 49 \\ 49 \\ 49 \\ 100 \\ \overline{\Sigma D^2 = 424}$
$r_s = 4 - \frac{6 \cdot 16}{1320} =$	0.927		r ₅ =1.	- <u>6·424</u> =-0.927 1320

FACIES SUCCESSION

